Project description:The fermented and distilled Chinese alcoholic beverage strong flavor baijiu (SFB) gets its characteristic flavor during fermentation in cellars lined with pit mud. Microbes in the pit mud produce many key precursors of flavor esters. The over 20 year maturation time of natural pit mud have promoted attempts to produce artificial pit mud (APM) with shorter maturation time. However, knowledge on the molecular basis of APM microbial dynamics and associated functional variation during SFB brewing is limited, and the role of this variability in high quality SFB production remains poorly understood. We studied APM maturation in new cellars till the fourth brewing batch using 16S rRNA gene amplicon sequencing, real-time quantitative PCR and function prediction based on the sequencing results, and metaproteomics and metabolomics techniques. The results provide insight into global APM prokaryotic dynamics and their role in SFB production, which will be helpful for further optimization of APM culture technique and improvement of SFB quality.
Project description:The aim of the study is to evaluate Pit-1-induced genes in the MCF-7 cell line The Pit-1 transcription factor (also known as POU1F1) plays a critical role in cell differentiation during organogenesis of the anterior pituitary in mammals and is a transcriptional activator for pituitary gene transcription. Increased expression of Pit-1 has been reported in human tumorigenic breast cells. Here, we found that Pit-1 overexpression or knockdown in human breast cancer cell lines induced profound phenotypic changes in the expression of proteins involved in cell proliferation, apoptosis, and invasion. In immunodeficient mice, Pit-1 overexpression induced tumoral growth and promoted metastasis in lung. In patients with invasive ductal carcinoma of the breast and node-positive tumors elevated expression of Pit-1 was significantly and independently associated with the occurrence of distant metastasis. These findings suggest that Pit-1 could help to make a more accurate prognosis in patients with node positive breast cancer and may represent a new therapeutic target (Journal of Clinical Investigation 2010, 120:4289-4302)
Project description:The aim of the study is to evaluate Pit-1-induced genes in the MCF-7 cell line The Pit-1 transcription factor (also known as POU1F1) plays a critical role in cell differentiation during organogenesis of the anterior pituitary in mammals and is a transcriptional activator for pituitary gene transcription. Increased expression of Pit-1 has been reported in human tumorigenic breast cells. Here, we found that Pit-1 overexpression or knockdown in human breast cancer cell lines induced profound phenotypic changes in the expression of proteins involved in cell proliferation, apoptosis, and invasion. In immunodeficient mice, Pit-1 overexpression induced tumoral growth and promoted metastasis in lung. In patients with invasive ductal carcinoma of the breast and node-positive tumors elevated expression of Pit-1 was significantly and independently associated with the occurrence of distant metastasis. These findings suggest that Pit-1 could help to make a more accurate prognosis in patients with node positive breast cancer and may represent a new therapeutic target (Journal of Clinical Investigation 2010, 120:4289-4302) MCF-7 cells were transfected with the pcDNA3 (control, two samples as condition, named C1 and C2) or the pcDNA3-Pit-1 overexpression vector (two samples as condition, named 1+ and 2+) for 48 hours.
Project description:In this study we present the prokaryotic community dynamics in a hatchery recirculating aquaculture system (RAS) of sole (Solea senegalensis).
Project description:Bitter pit is the most important physiological disorder affecting apples. In order to ascertain the genetic bases of its incidence in apple fruit, a mapping population of ‘Braeburn’ (susceptible to bitter pit) × ‘Cameo’ (resistant to bitter pit) cultivars was used to map the trait over two growing seasons. RNA-Seq on pools of RNA extracted from fruits of three resistant and three susceptible to bitter pit progenies at post-fertilization and full maturity stages, permitted us to identify a number of candidate genes underlying genetic resistance/susceptibility to bitter pit.