Project description:The effect of oral microbiota on the intestinal microbiota has garnered growing attention as a mechanism linking periodontal diseases to systemic diseases. However, the salivary microbiota is diverse and comprises numerous bacteria with a largely similar composition in healthy individuals and periodontitis patients. Thus, the systemic effects of small differences in the oral microbiota are unclear. In this study, we explored how health-associated and periodontitis-associated salivary microbiota differently colonized the intestine and their subsequent systemic effects by analyzing the hepatic gene expression and serum metabolomic profiles. The salivary microbiota was collected from a healthy individual and a periodontitis patient and gavaged into C57BL/6NJcl[GF] mice. Samples were collected five weeks after administration. Gut microbial communities were analyzed by 16S ribosomal RNA gene sequencing. Hepatic gene expression profiles were analyzed using a DNA microarray and quantitative polymerase chain reaction. Serum metabolites were analyzed by capillary electrophoresis time-of-flight mass spectrometry. The gut microbial composition at the genus level was significantly different between periodontitis-associated microbiota-administered (PAO) and health-associated oral microbiota-administered (HAO) mice. The hepatic gene expression profile demonstrated a distinct pattern between the two groups, with higher expression of Neat1, Mt1, Mt2, and Spindlin1, which are involved in lipid and glucose metabolism. Disease-associated metabolites such as 2-hydroxyisobutyric acid and hydroxybenzoic acid were elevated in PAO mice. These metabolites were significantly correlated with Bifidobacterium, Atomobium, Campylobacter, and Haemophilus, which are characteristic taxa in PAO mice. Conversely, health-associated oral microbiota were associated with higher levels of beneficial serum metabolites in HAO mice. The multi-omics approach used in this study revealed that periodontitis-associated oral microbiota is associated with the induction of disease phenotype when they colonized the gut of germ-free mice.
Project description:Predictive Value of MicroRNAs in the Progression of Oral Leukoplakias Comparison of 10 samples from non-progressive leukoplakias (did not turn into oral squamous cell carcinoma), with 10 samples from progressive leukoplakias (turned into oral squamous cell carcinoma w/in 5 yrs)
Project description:Chronic inflammation and gut microbiota dysbiosis are risk factors for colorectal cancer. In clinical practice, inflammatory bowel disease (IBD) patients have a greatly increased risk of developing colitis associated colorectal cancer (CAC). However, the basis underlying the initiation of CAC remains to be explored. Systematic filtration through existing genome-wide association study (GWAS) and conditional deletion of Zfp90 in CAC mice model indicated that Zfp90 was a putative oncogene in CAC development. Strikingly, depletion of gut microbiota eliminated the tumorigenic effect of Zfp90 in CAC mice model. Moreover, fecal microbiota transplantation demonstrated Zfp90 promoted CAC depending on gut microbiota. Combining 16s rDNA sequencing in feces specimens from CAC mice model, we speculated that Prevotella copri-defined microbiota might mediate the oncogenic role of Zfp90 in the development of CAC. Mechanistic studies revealed Zfp90 accelerated CAC development through Tlr4-Pi3k-Akt-Nf-κb pathway. Our findings elucidated the crucial role of Zfp90-microbiota-Nf-κb axis in creating a tumor-promoting environment and suggested therapeutic targets for CAC prevention and treatment.
Project description:The mucosae of the oral cavity are different at the histological level but are all exposed to common genotoxic agents. As a result of this exposure, changes in the mucosal epithelia develop giving rise to Oral Potentially Malignant Lesions (OPMLs), which with time may in turn progress to Oral Squamous Cell Carcinomas (OSCCs). Therefore, much effort should be devoted to identify features able to predict the likeliness of progression associated with an OPML. Such features may be helpful in assisting the clinician to establish both appropriate therapies and follow-up schedules. Here, we report a pilot study that compared the anatomical subsites of OPMLs development with occurrence of DNA aneuploidy and chromosomal copy number aberrations (CNAs). Multiple samples from histologically diagnosed OPMLs were processed for high resolution DNA flow cytometry (hr DNA-FCM) in order to determine the relative DNA content expressed by the DNA index (DI). Additionally, array-Comparative Genomic Hybridization (a-CGH) analysis was performed on FCM-sorted nuclei subpopulations based on DI values. Tongue OPMLs were more frequently associated with DNA aneuploidy and CNAs than OPMLs arising from all the other mucosal subsites. We suggest that the follow-up and the management of the patients with tongue OPMLs should receive a distinctive special attention. Clearly, this conclusion should be validated in a prospective clinical study. exposed to common genotoxic agents. As a result of this exposure, changes in the mucosal epithelia develop giving rise to Oral Potentially Malignant Lesions (OPMLs), which with time may in turn progress to Oral Squamous Cell Carcinomas (OSCCs). Therefore, much effort should be devoted to identify features able to predict the likeliness of progression associated with an OPML. Such features may be helpful in assisting the clinician to establish both appropriate therapies and follow-up schedules. Here, we report a pilot study that compared the anatomical subsites of OPMLs development with occurrence of DNA aneuploidy and chromosomal copy number aberrations (CNAs). Multiple samples from histologically diagnosed OPMLs were processed for high resolution DNA flow cytometry (hr DNA-FCM) in order to determine the relative DNA content expressed by the DNA index (DI). Additionally, array-Comparative Genomic Hybridization (a-CGH) analysis was performed on FCM-sorted nuclei subpopulations based on DI values. Tongue OPMLs were more frequently associated with DNA aneuploidy and CNAs than OPMLs arising from all the other mucosal subsites. We suggest that the follow-up and the management of the patients with tongue OPMLs should receive a distinctive special attention. Clearly, this conclusion should be validated in a prospective clinical study. We analyzed: 19 samples (4 aneuploid and 15 diploid components) deriving from oral potentially malignant lesions without dysplasia obtained of 16 patients; 14 samples (2 aneuploid and 12 diploid components) deriving from oral potentially malignant lesions with dysplasia obtained from 11 patients (two patients had multiple dysplastic lesions); 2 samples from visually normal mucosa in the near field obtained from two patients with dysplastic lesions. All the aneuploid samples had a purity of at least 90%.