Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:To investigate the effect of polar microbial metabolites on intestinal gene expression, we exposed Caco-2 cell to faecal water from control mice or the same mice under antibiotherapy (for 7-10 days).
Project description:The gastrointestinal ecosystem is a highly complex environment with a profound influence on human health. Inflammation in the gut, linked to an altered gut microbiome has been associated with the development of multiple human conditions including type 1 diabetes (T1D). Viruses infecting the gastrointestinal tract, especially enteroviruses, are also thought to play an important role in T1D pathogenesis possibly via overlapping mechanisms. Here, we apply an integrative approach to combine comprehensive faecal virome, microbiome and metaproteome data sampled before and at the onset of islet autoimmunity in 40 children. We show strong age and antibody related effects across the datasets. Mastadenovirus infection was associated with profound functional changes in the faecal metaproteome. Multiomic factor analysis modelling revealed proteins associated with carbohydrate transport from the genus Faecalibacterium were associated with islet autoimmunity. These findings demonstrate functional remodelling of the gut microbiota accompanies both islet autoimmunity and viral infection.
Project description:<p><strong>INTRODUCTION:</strong> Paratuberculosis, commonly known as Johne’s disease, is a chronic intestinal infection of ruminants caused by <em>Mycobacterium avium subspecies paratuberculosis</em> (MAP). Clinical signs, including reduced milk yields, weight loss and diarrhoea, are typically absent until 2 to 6 years post exposure.</p><p><strong>OBJECTIVES:</strong> To identify metabolomic changes profiles of MAP challenged Holstein-Friesian cattle and correlate identified metabolites to haematological and immunological parameters.</p><p><strong>METHODS:</strong> At approximately 6 weeks of age, calves (n = 9) were challenged with 3.8 x 10^9 cells of MAP (clinical isolate CIT003) on 2 consecutive days. Additional unchallenged calves (n = 9) formed the control group. The study used biobanked serum from cattle sampled periodically from 3- to 33-months post challenge. The assessment of sera using flow infusion electrospray high resolution mass spectrometry (FIE-HRMS) for high throughput, sensitive, non-targeted metabolite fingerprinting highlighted differences in metabolite levels between the two groups.</p><p><strong>RESULTS:</strong> In total, 25 metabolites which were differentially accumulated in MAP challenged cattle were identified, including 20 which could be correlated with certain haematological parameters, particularly monocyte levels.</p><p><strong>CONCLUSION: </strong>The targeted metabolites suggest shifts in amino acid metabolism that could reflect immune system activation linked to MAP and as well as differences in phosphocholine levels which could reflect activation of the Th1 (tending towards pro-inflammatory) immune response. If verified by future work, selected metabolites could be used as biomarkers to diagnose and manage MAP infected cattle.</p>
Project description:While cold stress has been shown to seriously impact cattle industry, there are only a few reports investigating the effect of cold stress on cattle. Whether severe cold stress results in alterations in gene expression and affects molecular genetic mechanisms remains unknown. We used microarrays to analyze the alterations in gene expression in peripheral blood samples in response to cold exposure and identified differentially regulated genes. This study was performed on 30 healthy Sanhe heifers with similar genetic backgrounds, weight, and age. In order to induce cold stress, the cattle were transferred outdoor and were exposed to a temperature of -32°C for 3 hours followed by housing in cowshed at 5°C for 15 hours. Blood samples with EDTA were collected from each animal before and after the cold exposure. After total RNA was isolated from blood cells, six RNA samples (three derived before and three after the cold exposure), were collected from three animals randomly selected from the 30 healthy heifers for gene expression profiling in response to severe cold stress.
Project description:The intestine is a site of diverse functions including digestion, nutrient absorption, immune surveillance, and microbial symbiosis. As such, intestinal homeostasis is vital for overall wellbeing. Faecal microRNAs (miRNAs) offer valuable non-invasive insights into the transcriptional state of the intestine. However, typical faecal miRNA yields and profiles remain incompletely characterised. Here, we develop an optimised protocol for faecal miRNA detection, and describe a reproducible murine faecal miRNA profile across several studies by performing a meta-analysis. By examining faecal miRNA changes during chronic infection with the gastrointestinal helminth, Trichuris muris, we identify the altered expression of miRNAs associated with fibrosis, barrier integrity and wound healing. Fibrosis was confirmed in vivo, suggesting a role for these miRNAs in regulating wound healing during chronic infection where the production of classical wound healing Th2 cytokines are low. Further implementations of this technique can identify novel hypotheses and therapeutic strategies in diverse disease contexts.
Project description:Transcriptional responses of two strain types of Mycobacterium avium subsp. paratuberculosis (MAP, cattle and sheep Strain) under in vitro iron limiting or iron sufficient growth conditions. Background: In MAP, the transcriptional role and essentiality of MAP2827 (IdeR) as an iron dependent regulator has been well established (Janagama et al. 2009). Therefore, in the absence of an ideR deletion mutant of MAP, to understand the genome-wide iron dependent transcriptional variations between the cattle and sheep MAP IdeR we used a heterologous expression of MAP IdeR in Mycobacterium smegmatis ideR deletion mutant.