Project description:Elephant grass (2n = 4x = 28; Cenchrus purpureus Schumach.), also known as Napier grass, is an important forage grass and potential energy crop in tropical and subtropical regions of Asia, Africa and America. However, no study has yet reported a genome assembly for elephant grass at the chromosome scale. Here, we report a high-quality chromosome-scale genome of elephant grass with a total size of 1.97 Gb and a 1.5% heterozygosity rate, obtained using short-read sequencing, single-molecule long-read sequencing and Hi-C chromosome conformation capture. Evolutionary analysis showed that subgenome A' of elephant grass and pearl millet may have originated from a common ancestor more than 3.22 million years ago (MYA). Further, allotetraploid formation occurred at approximately 6.61 MYA. Syntenic analyses within elephant grass and with other grass species indicated that elephant grass has experienced chromosomal rearrangements. We found that some key enzyme-encoding gene families related to the biosynthesis of anthocyanidins and flavonoids were expanded and highly expressed in leaves, which probably drives the production of these major anthocyanidin compounds and explains why this elephant grass cultivar has a high anthocyanidin content. In addition, we found a high copy number and transcript levels of genes involved in C4 photosynthesis and hormone signal transduction pathways that may contribute to the fast growth of elephant grass. The availability of elephant grass genome data advances our knowledge of the genetic evolution of elephant grass and will contribute to further biological research and breeding as well as for other polyploid plants in the genus Cenchrus.
Project description:BACKGROUND:Elephant grass [Cenchrus purpureus (Schumach.) Morrone] is used for bioenergy and animal feed. In order to identify candidate genes that could be exploited for marker-assisted selection in elephant grass, this study aimed to investigate changes in predictive accuracy using genomic relationship information and simple sequence repeats for eight traits (height, green biomass, dry biomass, acid and neutral detergent fiber, lignin content, biomass digestibility, and dry matter concentration) linked to bioenergetics and animal feeding. RESULTS:We used single-step, genome-based best linear unbiased prediction and genome association methods to investigate changes in predictive accuracy and find candidate genes using genomic relationship information. Genetic variability (p < 0.05) was detected for most of the traits evaluated. In general, the overall means for the traits varied widely over the cuttings, which was corroborated by a significant genotype by cutting interaction. Knowing the genomic relationships increased the predictive accuracy of the biomass quality traits. We found that one marker (M28_161) was significantly associated with high values of biomass digestibility. The marker had moderate linkage disequilibrium with another marker (M35_202) that, in general, was detected in genotypes with low values of biomass digestibility. In silico analysis revealed that both markers have orthologous regions in other C4 grasses such as Setaria viridis, Panicum hallii, and Panicum virgatum, and these regions are located close to candidate genes involved in the biosynthesis of cell wall molecules (xyloglucan and lignin), which support their association with biomass digestibility. CONCLUSIONS:The markers and candidate genes identified here are useful for breeding programs aimed at changing biomass digestibility in elephant grass. These markers can be used in marker-assisted selection to grow elephant grass cultivars for different uses, e.g., bioenergy production, bio-based products, co-products, bioactive compounds, and animal feed.
Project description:This study aims to reveal genes related to lignin production in Cenchrus purpureus through RNA-Seq. This species is widely used as forrage for cattle, and for the last years, due to its high biomass yield, has been considered as source to lignocellulosic ethanol. Given those two importances, lignin is a molecule related to low digestibility in cattle and recalcitrance in biofuel production. Eight samples were chosen from previous lignin production and forage quality data; four samples had low lignin production, and four had high lignin production. The highest nodes were collected for RNA extraction using TRIzol reagent, following Jordon-Thaden et a;. (2015) protocol. The cDNA library preparation was generated according to Illumina TruSeq Stranded mRNA Sample Prep kit protocol, and RNA sequencing was performed using HiSeq 2500 sequencer. Quality control was measured by FastQC software v 0.11.8. The sequenced reads were aligned to Cenchrus purpureus genome through STAR software v. 2.5.2b (Dobin et al., 2012). After that, the transcriptome was assembled using Stringtie v 2.0.4 software (Pertea et al., 2015). Salmon v 0.7.2 software (Patro et al., 2017) was used to quantify the sequenced reads. The DEG was identified using DESeq2 package, and genes functions were annotated through Trinotate software (Bryant et al., 2017). In total, approximately 130 million reads were sequenced. The final assembled transcriptome was formed by 101,169 transcripts. The differential expressed genes analysis revealed 52 significatively genes. Here, we highlighted genes related to sterol, L-serine and terpene biosynthetic process.