Project description:Next generation sequencing (NGS) was performed to identify genes changed in tea plant upon Colletotrichum camelliae infection. The goal of the work is to find interesting genes involved in tea plant in response to fungi infection. The object is to reveal the molecular mechanism of tea plant defense.
Project description:Next-generation sequencing (NGS) was performed to identify genes changed in tea plant cultivar Zhongcha 108 upon Colletotrichum camelliae infection. The goal of the work is to find interesting genes involved in tea plant in response to fungi infection. The object is to reveal the molecular mechanism of tea plant defense.
Project description:Senescence is initiated immediately in harvested tea leaves, and leads to physiological and biochemical changes, and could affects the final tea products. In the present work, we investigated the relationship between hormones and critical components in harvested tea leaves before withering, changes in hormones including abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and critical components like catechins, theanine, and caffeine were analyzed. Significant changes in these substances were identified and ABA correlated with catechin in harvested tea leaves before withering. RNA-seq transcriptome analysis revealed dramatic differences between tea samples at 1 h and 2 h compared with those at 0 h. The patterns of these three critical components correlated with the expression profiles of differentially expressed genes (DEGs). Weighted correlation network analysis of co-expressed genes revealed that genes in the mediumpurple2 module correlated with ABA and catechins. The results of this study suggest that harvested tea leaves before withering undergo significant hormonal changes (ABA, JA, and SA) and ABA may participate in regulating catechin biosynthesis.
Project description:In this study, it is noticeable that 32 tea-specific miRNAs were confirmed on the base of genome survey, using deep sequencing and microarray hybridization, and many miRNAs might associate with secondary metabolites synthesis.
Project description:In this study, it is noticeable that 32 tea-specific miRNAs were confirmed on the base of genome survey, using deep sequencing and microarray hybridization, and many miRNAs might associate with secondary metabolites synthesis. Leaves, buds and roots were collected