Project description:Total RNA sequencing of human and murine myoblasts and myotubes was extracted, depleted of ribosomal RNA and subjected to Illumina stranded paired end library prep and sequencing. Samples from Duchenne Muscular Dystrophy patients-derived myoblasts were included in this study
Project description:Global gene expression analysis was performed comparing human skeletal muscle samples from patients with various forms of muscular dystrophy and mitochondrial myopathies in order to identify specific gene expression changes associated with collagen VI deficiency (leading to UllrichM-BM-4s Congenital Muscular Dystrophy) and depletion of mitochondrial DNA relative to other mitochondrial myopathies We analysed the gene expression profile of skeletal muscle from children suffering from mitochondrial myopathies and various forms of muscular dystrophy relative to skeletal muscle from healthy children using commercially available arrays that represents the complete human genome (Agilent Human SurePrintGE, 8x60K )
Project description:Global gene expression analysis was performed comparing human skeletal muscle samples from patients with various forms of muscular dystrophy and mitochondrial myopathies in order to identify specific gene expression changes associated with collagen VI deficiency (leading to Ullrich´s Congenital Muscular Dystrophy) and depletion of mitochondrial DNA relative to other mitochondrial myopathies
Project description:Muscular dystrophy is a group of diseases that cause progressive weakness and degeneration of the skeletal muscles that control movement. Lacking polymerase I transcription release factor (PTRF, also known as Cavin1), an essential caveolae component, causes a secondary deficiency of caveolins resulting in muscular dystrophy. Because skeletal muscle is a heterogeneous tissue composed of different metabolic muscle fiber (myofibers) and mononuclear cells, the transcriptome responses of these myofibers and mononuclear cell to muscular dystrophy caused by PTRF deletion has not been explored. Here, we create muscular dystrophy mice caused by the deletion of PTRF gene and apply single-nucleus RNA sequencing (snRNA-seq) to unveil transcriptional changes in the skeletal muscle of mice with muscular dystrophy at single-nucleus resolution.
Project description:Fibrosis and fat replacement in the skeletal muscle is a major complication that leads to a loss of mobility in chronic muscle disorders, such as muscular dystrophy. However, our current knowledge on the in vivo properties of adipogenic stem and precursor cells remains unclear, mainly due to the high cell heterogeneity in skeletal muscles. For this purpose, we used single-cell RNA-sequencing to decomplexify interstitial cell populations in healthy and dystrophic skeletal muscles. We identified a CD142 (F3) positive cell subpopulation in mice and humans that is responsible for the inhibition of adipogenesis. Furthermore, we found a completely altered composition of interstitial cells in muscular dystrophy, with a near absence of the CD142-positive cells. The novel discovery of these adipo-regulatory cells in the skeletal muscle aids our understanding regarding the aberrant fat deposition in muscular dystrophy, paving the way for treatments that potentially sustain ambulation in patients with muscular dystrophy.
Project description:Intervention type:DRUG. Intervention1:Huaier, Dose form:GRANULES, Route of administration:ORAL, intended dose regimen:20 to 60/day by either bulk or split for 3 months to extended term if necessary. Control intervention1:None.
Primary outcome(s): For mRNA libraries, focus on mRNA studies. Data analysis includes sequencing data processing and basic sequencing data quality control, prediction of new transcripts, differential expression analysis of genes. Gene Ontology (GO) and the KEGG pathway database are used for annotation and enrichment analysis of up-regulated genes and down-regulated genes.
For small RNA libraries, data analysis includes sequencing data process and sequencing data process QC, small RNA distribution across the genome, rRNA, tRNA, alignment with snRNA and snoRNA, construction of known miRNA expression pattern, prediction New miRNA and Study of their secondary structure Based on the expression pattern of miRNA, we perform not only GO / KEGG annotation and enrichment, but also different expression analysis.. Timepoint:RNA sequencing of 240 blood samples of 80 cases and its analysis, scheduled from June 30, 2022..
Project description:Genome-wide homozygosity mapping was employed for identification of the locus involved in autosomal recessive muscular dystrophy highly prevalent in a small community.
Project description:TRIP4 is one of the subunits of the transcriptional coregulator ASC-1, a ribonucleoprotein complex that participates in transcriptional coactivation and RNA processing events. Recessive variants in the TRIP4 gene have been associated with spinal muscular atrophy with bone fractures as well as a severe form of congenital muscular dystrophy. Here we present the diagnostic journey of a patient with cerebellar hypoplasia and spinal muscular atrophy (PCH1) and congenital bone fractures. Initial exome sequencing analysis revealed no candidate variants. Reanalysis of the exome data by inclusion in the Solve-RD project resulted in the identification of a homozygous stop-gain variant in the TRIP4 gene, previously reported as disease-causing. This highlights the importance of analysis reiteration and improved and updated bioinformatic pipelines. Proteomic profile of the patient’s fibroblasts showed altered RNA-processing and impaired exosome activity supporting the pathogenicity of the detected variant. In addition, we identified a novel genetic form of PCH1, further strengthening the link of this characteristic phenotype with altered RNA metabolism.
Project description:Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder linked to contractions of the D4Z4 repeat array in the subtelomeric region of chromosome 4q. By comparing genome-wide gene expression data from muscle biopsies of patients with FSHD to those of 11 other neuromuscular disorders, we intend to identify disease-specific changes which are more likely to be involved in the early stages of the disease progression. The data will help to identify pathological mechanisms involved in FSHD. Experiment Overall Design: Comparison of the profiles of FSHD to 13 other conditions for disease-specific changes. The 13 conditions are NHM (Normal healthy muscle) n=15; JDM (Juvenile dermatomyositis) n=25; HSP (Human spastic paraplegia) n=4; FSHD (facioscapulohumeral dystrophy) unaffected n=5, affected n=9; FKRP (Fukutin related protein deficiency) n=7; ED-L (Emery-Dreifuss muscular dystrophy, lamin A/C deficiency) n=4; ED-E (Emery-Dreifuss muscular dystrophy, emerin deficiency) n=4; DYSF (dysferlinopathy) n=10; DMD (Duchenne Muscular Dystrophy) n=10; CALP (Calpain-3 deficiency) n=10; BMD (Becker Muscular Dystrophy) n=5; AQM (Acute quadriplegic myopathy) n=5; ALS (Amyotrophic lateral sclerosis) n=9.
Project description:Duchenne muscular dystrophy (DMD) is a genetic disease that results in the death of affected boys by early adulthood.The genetic defect responsible for DMD has been known for over 25 years, yet at present there is neither cure nor effective treatment for DMD. During early disease onset, the mdx mouse has been validated as an animal model for DMD and use of this model has led to valuable but incomplete insights into the disease process. For example, immune cells are thought to be responsible for a significant portion of muscle cell death in the mdx mouse; however, the role and time course of the immune response in the dystrophic process have not been well described. In this paper we constructed a simple mathematical model to investigate the role of the immune response in muscle degeneration and subsequent regeneration in the mdx mouse model of Duchenne muscular dystrophy. Our model suggests that the immune response contributes substantially to the muscle degeneration and regeneration processes. Furthermore, the analysis of the model predicts that the immune system response oscillates throughout the life of the mice, and the damaged fibers are never completely cleared.