Project description:The meiofauna is an important part of the marine ecosystem, but its composition and distribution patterns are relatively unexplored. Here we assessed the biodiversity and community structure of meiofauna from five locations on the Swedish western and southern coasts using a high-throughput DNA sequencing (metabarcoding) approach. The mitochondrial cytochrome oxidase 1 (COI) mini-barcode and nuclear 18S small ribosomal subunit (18S) V1-V2 region were amplified and sequenced using Illumina MiSeq technology. Our analyses revealed a higher number of species than previously found in other areas: thirteen samples comprising 6.5 dm3 sediment revealed 708 COI and 1,639 18S metazoan OTUs. Across all sites, the majority of the metazoan biodiversity was assigned to Arthropoda, Nematoda and Platyhelminthes. Alpha and beta diversity measurements showed that community composition differed significantly amongst sites. OTUs initially assigned to Acoela, Gastrotricha and the two Platyhelminthes sub-groups Macrostomorpha and Rhabdocoela were further investigated and assigned to species using a phylogeny-based taxonomy approach. Our results demonstrate that there is great potential for discovery of new meiofauna species even in some of the most extensively studied locations.
Project description:Seed of 4 lines of S. tuberosum var andigena were sown and, after transplanting, grown in 3 gal nursery containers in a greenhouse with natural daylight. The seeds were sown in July and the drought stress experiment began in September. Drought stress was administered by withholding water and monitored by measuring the rate of photosynthesis (PS; LiCor 6400). We found that loss of photosynthetic capability (ie a PS rate of 0-2 mM CO2/m2/sec) correlated with a severe drought stress. Control plants were watered normally and maintained a PS rate of 18-20 mM CO2/m2/sec. After drought stress, the treated plants were re-watered and PS measurements taken again. After the first cycles of stress, control and treated plants were harvested and roots, tubers and shoots were stored at –80°C for RNA extractions. The drought experiment was then repeated for the remaining plants such that they were exposed to a second cycle of stress. For each line of S. andigena, there were 2 control and 2 treated plants per cycle of stress. RNA was extracted following the acid phenol protocol of TIGR. Keywords: Direct comparison, loop design
Project description:The biodiversity crisis is one of the greatest challenges facing humanity, but our understanding of the drivers remains limited. Thus, after decades of studies and regulation efforts, it remains unknown whether to what degree and at what concentrations modern agricultural pesticides cause regional-scale species losses. We analyzed the effects of pesticides on the regional taxa richness of stream invertebrates in Europe (Germany and France) and Australia (southern Victoria). Pesticides caused statistically significant effects on both the species and family richness in both regions, with losses in taxa up to 42% of the recorded taxonomic pools. Furthermore, the effects in Europe were detected at concentrations that current legislation considers environmentally protective. Thus, the current ecological risk assessment of pesticides falls short of protecting biodiversity, and new approaches linking ecology and ecotoxicology are needed.
| S-EPMC3704006 | biostudies-literature
Project description:Metabarcoding benthic macroinvertebrates - assessing biodiversity at small spatial scales
Project description:BackgroundHigh throughput DNA sequencing of bulk invertebrate samples or metabarcoding is becoming increasingly used to provide profiles of biological communities for environmental monitoring. As metabarcoding becomes more widely applied, new reference DNA barcodes linked to individual specimens identified by taxonomists are needed. This can be achieved through using DNA extraction methods that are not only suitable for metabarcoding but also for building reference DNA barcode libraries.MethodsIn this study, we test the suitability of a rapid non-destructive DNA extraction method for metabarcoding of freshwater invertebrate samples.ResultsThis method resulted in detection of taxa from many taxonomic groups, comparable to results obtained with two other tissue-based extraction methods. Most taxa could also be successfully used for subsequent individual-based DNA barcoding and taxonomic identification. The method was successfully applied to field-collected invertebrate samples stored for taxonomic studies in 70% ethanol at room temperature, a commonly used storage method for freshwater samples.DiscussionWith further refinement and testing, non-destructive extraction has the potential to rapidly characterise species biodiversity in invertebrate samples, while preserving specimens for taxonomic investigation.
Project description:Biodiversity is an important parameter for the evaluation of the extant environmental conditions. Here, we used environmental DNA (eDNA) metabarcoding to investigate fish biodiversity in five different estuaries in Japan. Water samples for eDNA were collected from river mouths and adjacent coastal areas of two estuaries with high degrees of development (the Tama and Miya Rivers) and three estuaries with relatively low degrees of development (the Aka, Takatsu, and Sendai Rivers). A total of 182 fish species across 67 families were detected. Among them, 11 species occurred in all the rivers studied. Rare fishes including endangered species were successfully detected in rich natural rivers. Biodiversity was the highest in the Sendai River and lowest in the Tama River, reflecting the degree of human development along each river. Even though nutrient concentration was low in both the Aka and Sendai Rivers, the latter exhibited greater diversity, including many tropical or subtropical species, owing to its more southern location. Species composition detected by eDNA varied among rivers, reflecting the distribution and migration of fishes. Our results are in accordance with the ecology of each fish species and environmental conditions of each river.
Project description:BackgroundTraditional biomonitoring approaches have delivered a basic understanding of biodiversity, but they cannot support the large-scale assessments required to manage and protect entire ecosystems. This study used DNA metabarcoding to assess spatial and temporal variation in species richness and diversity in arthropod communities from 52 protected areas spanning 3 Canadian ecoregions.ResultsThis study revealed the presence of 26,263 arthropod species in the 3 ecoregions and indicated that at least another 3,000-5,000 await detection. Results further demonstrate that communities are more similar within than between ecoregions, even after controlling for geographical distance. Overall α-diversity declined from east to west, reflecting a gradient in habitat disturbance. Shifts in species composition were high at every site, with turnover greater than nestedness, suggesting the presence of many transient species.ConclusionsDifferences in species composition among their arthropod communities confirm that ecoregions are a useful synoptic for biogeographic patterns and for structuring conservation efforts. The present results also demonstrate that metabarcoding enables large-scale monitoring of shifts in species composition, making it possible to move beyond the biomass measurements that have been the key metric used in prior efforts to track change in arthropod communities.