Project description:Bombali virus (BOMV) is a novel Orthoebolavirus that has been detected in free-tailed bats in Sierra Leone, Guinea, Kenya, and Mozambique. We screened our collection of 349 free-tailed bat lungs collected in Côte d'Ivoire and Tanzania for BOMV RNA and tested 228 bat blood samples for BOMV antibodies. We did not detect BOMV-specific antibodies but found BOMV RNA in a Mops condylurus bat from Tanzania, marking the first detection of an ebolavirus in this country. Our findings further expand the geographic range of BOMV and support M. condylurus' role as a natural BOMV host.
Project description:Bombali virus (genus Ebolavirus) was identified in organs and excreta of an Angolan free-tailed bat (Mops condylurus) in Kenya. Complete genome analysis revealed 98% nucleotide sequence similarity to the prototype virus from Sierra Leone. No Ebola virus-specific RNA or antibodies were detected from febrile humans in the area who reported contact with bats.
Project description:In 2018, a previously unknown Ebola virus, Bombali virus, was discovered in Sierra Leone. We describe detection of Bombali virus in Guinea. We found viral RNA in internal organs of 3 Angolan free-tailed bats (Mops condylurus) trapped in the city of N'Zerekore and in a nearby village.
Project description:Bats are well known reservoir hosts for RNA and DNA viruses. The use of captive bats in research has intensified over the past decade as researchers aim to examine the virus-reservoir host interface. In this study, we investigated the effects of captivity on the fecal bacterial microbiome of an insectivorous microbat, Mops condylurus, a species that roosts in close proximity to humans and has likely transmitted viral infections to humans. Using amplicon 16S rRNA gene sequencing, we characterized changes in fecal bacterial community composition for individual bats directly at the time of capture and again after six weeks in captivity. We found that microbial community richness by measure of the number of observed operational taxonomic units (OTUs) in bat feces increases in captivity. Importantly, we found the similarity of microbial community structures of fecal microbiomes between different bats to converge during captivity. We propose a six week-acclimatization period prior to carrying out infection studies or other research influenced by the microbiome composition, which may be advantageous to reduce variation in microbiome composition and minimize biological variation inherent to in vivo experimental studies.