Project description:A mutualistic relationship between reef-building corals and endosymbiotic algae (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. If, and to what extent, differences in algal symbiont clade contents can exert effects on the coral host transcriptome is currently unknown. In this study, we monitored algal physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered coral fragments using a custom cDNA gene expression microarray. Combining these analyses with results from algal and host genotyping revealed a striking symbiont effect on both the acclimated coral host transcriptome and the magnitude of the thermal stress response. This is the first study that links coral host transcriptomic patterns to the clade content of their algal symbiont community. Our data provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-algal partnerships.
Project description:The common house spider Parasteatoda tepidariorum is a chelicerate model organism for studying developmental mechanisms and their evolution in arthropods. In contrast to the well-studied model insect, Drosophila melanogaster, embryos of the spider undergo patterning in a cellular environment from early stages (at least after the number of the nuclei increase to 16). Use of spider embryos provide new opportunities to understand the evolution of developmental mechanisms underlying arthropod body plans. This analysis aims to generate genome-scale, developmental profiles of gene expression in embryos of the spider P. tepidariorum, which facilitate a wide range of studies using this spider species.