Project description:Waste decomposition in landfills is a complex and microbe-mediated process. Understanding the microbial community composition and structure is critical for accelerating decomposition and reducing adverse impact on the environment. Here, we examined the microbial communities along with landfill depth and age (LDA) in a sanitary landfill in Beijing, China using 16s rRNA Illumina sequencing and GeoChip 4.6. We found that Clostridiales and Methanofollis were the predominant bacteria and archaea in the present landfill, respectively. Interestingly, in contrast with the decreasing trend of microbial diversity in soil, both phylogenetic and functional diversities were higher in deeper and older refuse in the landfill. Phylogenetic compositions were obviously different in the refuse with the same LDA and such difference is mainly attributed to the heterogeneity of refuse instead of random process. Nevertheless, functional structures were similar within the same LDA, indicating that microbial community assembly in the landfill may be better reflected by functional genes rather than phylogenetic identity. Mantel test and canonical correspondence analysis suggested that environmental variables had significant impacts on both phylogenetic composition and functional structure. Higher stress genes, genes for degrading toxic substances and endemic genes in deeper and older refuse indicated that they were needed for the microorganisms to survive in the more severe environments. This study suggests that landfills are a repository of stress-resistant and contaminant-degrading microorganisms, which can be used for accelerating landfill stabilization and enhancing in situ degradation. Fifteen refuse samples with five landfill depths and ages (6m/2a, 12m/4a, 18m/6a, 24m/8a and 30m/10a) were collected from a sanitary landfill in Beijing, China. Three replicates in every landfill depth and age
Project description:Waste decomposition in landfills is a complex and microbe-mediated process. Understanding the microbial community composition and structure is critical for accelerating decomposition and reducing adverse impact on the environment. Here, we examined the microbial communities along with landfill depth and age (LDA) in a sanitary landfill in Beijing, China using 16s rRNA Illumina sequencing and GeoChip 4.6. We found that Clostridiales and Methanofollis were the predominant bacteria and archaea in the present landfill, respectively. Interestingly, in contrast with the decreasing trend of microbial diversity in soil, both phylogenetic and functional diversities were higher in deeper and older refuse in the landfill. Phylogenetic compositions were obviously different in the refuse with the same LDA and such difference is mainly attributed to the heterogeneity of refuse instead of random process. Nevertheless, functional structures were similar within the same LDA, indicating that microbial community assembly in the landfill may be better reflected by functional genes rather than phylogenetic identity. Mantel test and canonical correspondence analysis suggested that environmental variables had significant impacts on both phylogenetic composition and functional structure. Higher stress genes, genes for degrading toxic substances and endemic genes in deeper and older refuse indicated that they were needed for the microorganisms to survive in the more severe environments. This study suggests that landfills are a repository of stress-resistant and contaminant-degrading microorganisms, which can be used for accelerating landfill stabilization and enhancing in situ degradation.
Project description:Genome editing was conducted on a t(3;8) K562 model to investigate the effects of deleting different modules or CTCF binding sites within the MYC super-enhancer. To check mutations after targeting with CRISPR-Cas9 we performed amplicon sequencing using the Illumina PCR-based custom amplicon sequencing method using the TruSeq Custom Amplicon index kit (Illumina). The first PCR was performed using Q5 polymerase (NEB), the second nested PCR with KAPA HiFi HotStart Ready mix (Roche). Samples were sequenced paired-end (2x 250bp) on a MiSeq (Illumina).
Project description:We report the genome-wide binding patterns of nuclear FGFR1 in Control and Schizophrenia hiPSC-dervied NPC differntiated in neuronal media for two days. We also report the genome-wide binding patterns of NOTCH in schizophrenia hiPSC-dervied NPC differntiated in neuronal media for 2 days
Project description:Amplicon-based targeted re-sequencing analysis was performed in the patient-derived gliobastoma cell culture samples. For this purpose, genomic DNA (gDNA) was isolated and DNA libraries were prepared using the TruSeq Custom Amplicon Low Input (Illumina, Inc.) technology. By this, a pool of 375 amplicons was generated for each single sample in order to enrich for the target genes ATRX1, EGFR, IDH1, NF1, PDGFRA, PIK3CG, PIK3R1, PTEN, RB1 and TP53. Sequencing was performed on the Illumina MiSeq® next generation sequencing system (Illumina Inc.) and its 2 x 250 bp paired-end v2 read chemistry. The resulting reads were quality controlled and mapped against the human reference genome (hg19). For all samples, sequence variations of the amplified regions of interest in comparison to the human reference sequence were identified and filtered based on reliability.
Project description:Using 5' droplet-based single cell sequencing, we profiled single cells dervied from human colorectal cancer organoids carrying either APC mutation or RSPO fusion, and paired normal colon organoids for the later.