Project description:Clostridium clariflavum is a Cluster III Clostridium within the family Clostridiaceae isolated from thermophilic anaerobic sludge (Shiratori et al, 2009). This species is of interest because of its similarity to the model cellulolytic organism Clostridium thermocellum and for the ability of environmental isolates to break down cellulose and hemicellulose. Here we describe features of the 4,897,678 bp long genome and its annotation, consisting of 4,131 protein-coding and 98 RNA genes, for the type strain DSM 19732.
Project description:Clostridium indolis DSM 755(T) is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C. saccharolyticum and C. hathewayi, have demonstrated interesting metabolic potentials related to plant degradation and human health. The genome of C. indolis DSM 755(T) reveals an abundance of genes in functional groups associated with the transport and utilization of carbohydrates, as well as citrate, lactate, and aromatics. Ecologically relevant gene clusters related to nitrogen fixation and a unique type of bacterial microcompartment, the CoAT BMC, are also detected. Our genome analysis suggests hypotheses to be tested in future culture based work to better understand the physiology of this poorly described species.
Project description:In this study, we sequenced the complete genome of the Clostridium difficile type strain DSM 1296(T). A combination of single-molecule real-time (SMRT) and Illumina sequencing technology revealed the presence of one chromosome and two extrachromosomal elements, the bacteriophage phiCDIF1296T and a putative plasmid-like structure harboring genes of another bacteriophage.
Project description:Clostridium saccharoperbutylacetonicum strain DSM 14923 is known as a butanol-producing bacterium. Various organic compounds such as glucose, fructose, sucrose, mannose, and cellobiose are fermented. The genome consists of one chromosome and one circular megaplasmid. C. saccharoperbutylacetonicum was used in industrial fermentation processes to produce the solvents acetone, butanol, and ethanol.
Project description:Clostridium saccharobutylicum was employed for the production of acetone and butanol in South Africa until the 1970s. The genome comprises a single replicon (5,107,814 bp) harboring all the genes necessary for solvent production and the degradation of various organic compounds, such as fructose, cellobiose, sucrose, and mannose.
Project description:Clostridium propionicumis a strict anaerobic, Gram positive, rod-shaped bacterium that belongs to the clostridial cluster XIVb. The genome consists of one replicon (3.1 Mb) and harbors 2,936 predicted protein-encoding genes. The genome encodes all enzymes required for fermentation of the amino acids α-alanine, β-alanine, serine, threonine, and methionine.
Project description:This experiment aim was to characterize the catabolism of L-rhamnose of Clostridium beijerinckii DSM 6423 by transcriptomic analysis, generating new insights and knowledge on utilization of L-rhamnose for production of chemicals, including Isopropanol, Butanol, Ethanol (IBE) and 1,2-propandiol. These analysis on cultures grown on L-rhamnose compared to D-glucose grown cultures showed upregulation of the L-rhamnose-related clusters and genes, and lower expression of the solventogenic genes, which was reflected in the products formed.
Project description:Here, we report on the closed genome sequence of Clostridium pasteurianum DSM 525, which is an anaerobic, Gram-positive and endospore-forming organism. C. pasteurianum can fix N2 and produce solvents such as butanol and 1,3-propanediol from carbohydrates. The genome consists of a single 4,350,673-bp replicon.