Project description:Feather evolution enabled feathered dinosaurs and early Mesozoic birds to venture into new ecological niches. Studying how feathers and scales are specified provides insight into how a new organ evolves. We use genome-wide analyses to identify feather-associated genes and test their feather-forming ability by expressing them in chicken and alligator scales. Intermediate morphotypes revealed five cardinal morphogenetic events: localized growth zone, follicle invagination, branching, feather keratin differentiation and dermal papilla formation. In contrast to molecules known to induce feathers on scales (retinoic acid, beta-catenin), we identify novel scale-feather converters (Sox2, Zic1, Grem1, Spry2, Sox18) which induce only one or several of the five regulatory modules. Some morphotypes resemble filamentous appendages found in feathered dinosaur fossils, while others demonstrate some characteristics of modern feathers. We propose that at least five morpho-regulatory modules were used to diversify ancient reptile scales. The regulatory combination and hierarchical integration led to extant feather forms.
Project description:Genome organization influences transcriptional regulation by facilitating interactions between gene promoters and distal regulatory elements. To analyse distal promoter contacts we used Capture Hi-C (CHi-C) to enrich for promoter-interactions in HiC libraries from mouse ESC and E14.5 fetal liver. Please note additional files included. These files were created using the following protocol: Significantly interacting regions were called using the GOTHiC BioConductor package (http://www.bioconductor.org/packages/devel/bioc/html/GOTHiC.html) as described in (Mifsud et al.).<br>Update on December 2015: the original additional file E-MTAB-2414.additional.1.zip contained an earlier iteration of processed data and not the one that was used for the published paper. The file now contains the correct list of interactions.
Project description:Feather evolution enabled feathered dinosaurs and early Mesozoic birds to venture into new ecological niches. Studying how feathers and scales are specified provides insight into how a new organ evolves. We use genome-wide analyses to identify feather-associated genes and test their feather-forming ability by expressing them in chicken and alligator scales. Intermediate morphotypes revealed five cardinal morphogenetic events: localized growth zone, follicle invagination, branching, feather keratin differentiation and dermal papilla formation. In contrast to molecules known to induce feathers on scales (retinoic acid, beta-catenin), we identify novel scale-feather converters (Sox2, Zic1, Grem1, Spry2, Sox18) which induce only one or several of the five regulatory modules. Some morphotypes resemble filamentous appendages found in feathered dinosaur fossils, while others demonstrate some characteristics of modern feathers. We propose that at least five morpho-regulatory modules were used to diversify ancient reptile scales. The regulatory combination and hierarchical integration led to extant feather forms.
Project description:Feather evolution enabled feathered dinosaurs and early Mesozoic birds to venture into new ecological niches. Studying how feathers and scales are specified provides insight into how a new organ evolves. We use genome-wide analyses to identify feather-associated genes and test their feather-forming ability by expressing them in chicken and alligator scales. Intermediate morphotypes revealed five cardinal morphogenetic events: localized growth zone, follicle invagination, branching, feather keratin differentiation and dermal papilla formation. In contrast to molecules known to induce feathers on scales (retinoic acid, beta-catenin), we identify novel scale-feather converters (Sox2, Zic1, Grem1, Spry2, Sox18) which induce only one or several of the five regulatory modules. Some morphotypes resemble filamentous appendages found in feathered dinosaur fossils, while others demonstrate some characteristics of modern feathers. We propose that at least five morpho-regulatory modules were used to diversify ancient reptile scales. The regulatory combination and hierarchical integration led to extant feather forms.