Project description:Using RNAseq of small RNA libraries isolated from the gill tissue of the Antarctic fish Trematomus bernacchii we have characterized the termal sensitivity of miRNA homologues in these highly stenothermic fish.
Project description:Background: Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi. Results: Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions. Conclusions: This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and may be used for acclimation to environmental conditions.
Project description:Sea ice microbial communities produce large amounts of the sulfur metabolite dimethylsulfoniopropionate (DMSP), a precursor of the climate cooling gas dimethylsulfide. Despite their importance to the polar sulfur cycle, drivers and metabolic pathways of sea ice DMSP are uncertain. Here we report the first measurements of sea ice DMSP sulfur isotopic composition (34S/32S ratio, ?34S). ?34S values in ice cores from the Ross Sea and Weddell Sea reveal considerable variability across seasons and between ice horizons (from +10.6 to +23.6‰). We discuss how the most extreme ?34S values observed could be related to unique DMSP cycling in the seasonally extreme physiochemical conditions of isolated brine inclusions in winter-spring. Using cell cultures, we show that part of the DMSP ?34S variability could be explained by distinct DMSP metabolism in sea ice microalgae. These findings advance our understanding of the sea ice sulfur cycle and metabolic adaptations of microbes in extreme environments.
Project description:Background: Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi. Results: Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions. Conclusions: This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and may be used for acclimation to environmental conditions. RNA-seq study of sRNA populations in two species of diatoms using Illumina GAII high-throughput sequencing