Project description:Deficiency in the X-linked inhibitor of apoptosis protein (XIAP) is the cause for the X-linked lymphoproliferative syndrome 2 (XLP2). About one third of all patients suffers from severe and therapy refractory inflammatory bowel disease (IBD), but the exact pathogenesis remains undefined. We examined the differences in gene expression of pediatric XLP2 patients with IBD to healthy controls and pediatric IBD patients.
Project description:Background and aims: Gene mutations or variants leading to insufficient reactive oxygen species (ROS) production have been associated with inflammatory bowel disease (IBD). In particular, 40-50% of patients with chronic granulomatous disease have IBD (CGD-IBD). CGD is caused by inherited defects in any one of the 5 subunits forming the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived ROS production. While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection in this immune compromised population. Understanding the impact of NOX2 defects on the composition and function of the intestinal microbiota may lead to the identification of treatments for CGD-IBD. Methods: We evaluated GI symptom and quality of life scores, and clinical biomarkers of local (i.e. fecal occult blood and calprotectin) and systemic (i.e. CBC, CRP, ESR, and albumin) inflammation in a cohort of 79 patients with CGD, 8 mutation carriers and 17 healthy controls followed at the National Institutes of Health (NIH). We profiled the intestinal microbiome by 16S rRNA (V4 region) sequencing and the stool metabolome by mass spectrometry in all fecal samples, and further validated our findings by profiling the stool microbiome in a second cohort of 36 patients with CGD recruited from 11 centers across North-America through the Primary Immune Deficiency Treatment Consortium (PIDTC). Predictive functional profiling of the microbial communities based on 16S rRNA sequencing was also performed. Results: After controlling for significant variables, we show decreased alpha diversity and identified distinct intestinal microbiome and metabolomic profiles in patients with CGD compared to healthy individuals. In particular, we observed enrichment for Erysipelatoclostridium spp., Sellimonas spp. and Lachnoclostridium spp. in stool samples from patients with CGD. Despite differences in alpha and beta diversity in samples from the NIH compared to the PIDTC cohort, there were several bacterial taxa that correlated significantly between both cohorts. We further demonstrate that patients with active IBD and/or a history of IBD have a distinct microbiome and metabolomic profile compared to patients without CGD-IBD and identified bacterial taxa to be evaluated as potential markers of disease severity, as well as targets for future therapeutic interventions. Conclusions: Intestinal microbiome and metabolomic signatures distinguished patients with CGD and CGD-IBD and identified microbial and metabolomic candidates to be further evaluated as potential targets to improve the management of patients with CGD-IBD.
Project description:Study 1: Transcriptomic profiles in colon tissue from inflammatory bowel diseases patients in relation to N-nitroso compound exposure and colorectal cancer risk Study 1: N-nitroso compounds (NOC) have been suggested to play a role in human cancer development but definitive evidence is still lacking. In this study we investigated gene expression modifications induced in human colon tissue in relation to NOC exposure to gain insight in the relevance of these compounds in human colorectal cancer (CRC) development. Since there are indications that inflammation stimulates endogenous NOC formation, the study population consisted of patients with inflammatory bowel disease (IBD) and irritable bowel syndrome patients as controls without inflammation. Strong transcriptomic differences were identified in colonic biopsies from IBD patients and compared to controls that enhance the understanding of IBD pathophysiology. However, fecal NOC levels were not increased in IBD patients, suggesting that inflammation did not stimulate NOC formation. By relating gene expression changes of all subjects to fecal NOC levels, we did, however, identify a NOC exposure-associated transcriptomic response that suggests that physiological NOC concentrations may induce genotoxic responses and chromatin modifications in human colon tissue, both of which are linked to carcinogenicity. In a network analysis, chromatin modifications were linked to 11 significantly modulated histone genes, pointing towards a possible epigenetic mechanism that may be relevant in comprehending the molecular basis of NOC-induced carcinogenesis. We conclude that NOC exposure is associated with gene expression modifications in the colon that may increase CRC risk in humans. Study 2: Red meat intake-induced increases in fecal water genotoxicity correlate with pro-carcinogenic gene expression changes in the human colon Study 2: Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat intake on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to transcriptomic changes induced in colonic tissue. In order to evaluate the potential effect of an inflamed colon on endogenous nitrosation, the study population consisted of inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) control subjects without inflammation. The intervention had no effect on fecal NOC formation but fecal water genotoxicity significantly increased in response to red meat intake. Since IBD patients showed no difference in fecal NOC formation or fecal water genotoxicity levels as compared to IBS controls, for transcriptomic analyses, all subjects were grouped together. Genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated that are known to play a part in the carcinogenic process in the human colon. These results are in line with a possible oxidative effect of dietary heme. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a possible risk of CRC development in humans. The study investigated transcription levels in human colon biopsies obtained during a colonoscopic exam in 32 subjects suffering from either inflammatory bowel disease (IBD) or irritable bowel syndrome (IBS). IBS patients served as control patients for comparison with IBD patients (see Study 1). 12 of these patients (6 IBD and 6 IBS) also followed a 7-day diet high in red meat (300 grams/day) after which a second colonscopic exam was performed to obtain colon biopsies to investigate the effect of the red meat intervention (Study 2). For each subject, cRNA copies of mRNA isolated from the colon biopsies were labeled with one dye (Cy3) and each sample was hybridized on a separate array. One replicate per subject or before/after red meat intervention (so 44 arrays in total, i.e. 20 before patients and 12 before and after patients).
Project description:Study 1: Transcriptomic profiles in colon tissue from inflammatory bowel diseases patients in relation to N-nitroso compound exposure and colorectal cancer risk Study 1: N-nitroso compounds (NOC) have been suggested to play a role in human cancer development but definitive evidence is still lacking. In this study we investigated gene expression modifications induced in human colon tissue in relation to NOC exposure to gain insight in the relevance of these compounds in human colorectal cancer (CRC) development. Since there are indications that inflammation stimulates endogenous NOC formation, the study population consisted of patients with inflammatory bowel disease (IBD) and irritable bowel syndrome patients as controls without inflammation. Strong transcriptomic differences were identified in colonic biopsies from IBD patients and compared to controls that enhance the understanding of IBD pathophysiology. However, fecal NOC levels were not increased in IBD patients, suggesting that inflammation did not stimulate NOC formation. By relating gene expression changes of all subjects to fecal NOC levels, we did, however, identify a NOC exposure-associated transcriptomic response that suggests that physiological NOC concentrations may induce genotoxic responses and chromatin modifications in human colon tissue, both of which are linked to carcinogenicity. In a network analysis, chromatin modifications were linked to 11 significantly modulated histone genes, pointing towards a possible epigenetic mechanism that may be relevant in comprehending the molecular basis of NOC-induced carcinogenesis. We conclude that NOC exposure is associated with gene expression modifications in the colon that may increase CRC risk in humans. Study 2: Red meat intake-induced increases in fecal water genotoxicity correlate with pro-carcinogenic gene expression changes in the human colon Study 2: Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat intake on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to transcriptomic changes induced in colonic tissue. In order to evaluate the potential effect of an inflamed colon on endogenous nitrosation, the study population consisted of inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) control subjects without inflammation. The intervention had no effect on fecal NOC formation but fecal water genotoxicity significantly increased in response to red meat intake. Since IBD patients showed no difference in fecal NOC formation or fecal water genotoxicity levels as compared to IBS controls, for transcriptomic analyses, all subjects were grouped together. Genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated that are known to play a part in the carcinogenic process in the human colon. These results are in line with a possible oxidative effect of dietary heme. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a possible risk of CRC development in humans.
Project description:Significant gut microbiota heterogeneity exists amongst UC patients though the clinical implications of this variance are unknown. European and South Asian UC patients exhibit distinct disease risk alleles, many of which regulate immune function and relate to variation in gut microbiota β-diversity. We hypothesized ethnically distinct UC patients exhibit discrete gut microbiotas with unique luminal metabolic programming that influence adaptive immune responses and relate to clinical status. Using parallel bacterial 16S rRNA and fungal ITS2 sequencing of fecal samples (UC n=30; healthy n=13), we corroborated previous observations of UC-associated depletion of bacterial diversity and demonstrated significant gastrointestinal expansion of Saccharomycetales as a novel UC characteristic. We identified four distinct microbial community states (MCS 1-4), confirmed their existence using microbiota data from an independent UC cohort, and show they co-associate with patient ethnicity and degree of disease severity. Each MCS was predicted to be uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of metabolic products from these pathways. Using a novel in vitro human DC/T-cell assay we show that DC exposure to patient fecal water led to MCS -specific changes in T-cell populations, particularly the Th1:Th2 ratio, and that patients with the most severe disease exhibited the greatest Th2 skewing. Thus, based on ethnicity, microbiome composition, and associated metabolic dysfunction, UC patients may be stratified in a clinically and immunologically meaningful manner, providing a platform for the development of FMC-focused therapy. Fecal microbiome was assessed with Affymetrix PhyloChip arrays from patients with ulcerative colitis and healthy controls.
Project description:Peripheral blood-derived macrophages were stimulated with viral-like particles isolated from colonic resections from patients with Crohn's disease (CD), ulcerative colitis (UC), or non-IBD controls diagnoses. RNAseq was performed to unbiasedly assess the transcriptional responses to these stimuli and revealed highly divergent macrophage transcriptional programs in response to non-IBD compared to IBD VLP.