Project description:Deformities in cultured fish species may be genetic, and identifying causative genes is essential to expand production and maintain farmed animal welfare. We previously reported a genetic deformity in juvenile red sea bream, designated a transparent phenotype. To identify its causative gene, we conducted genome-wide linkage analysis and identified two single nucleotide polymorphisms (SNP) located on LG23 directly linked to the transparent phenotype. The scaffold on which the two SNPs were located contained two candidate genes, duox and duoxa, which are related to thyroid hormone synthesis. Four missense mutations were found in duox and one in duoxa, with that in duoxa showing perfect association with the transparent phenotype. The mutation of duoxa was suggested to affect the transmembrane structure and thyroid-related traits, including an enlarged thyroid gland and immature erythrocytes, and lower thyroxine (T4) concentrations were observed in the transparent phenotype. The transparent phenotype was rescued by T4 immersion. Loss-of-function of duoxa by CRISPR-Cas9 induced the transparent phenotype in zebrafish. Evidence suggests that the transparent phenotype of juvenile red sea bream is caused by the missense mutation of duoxa and that this mutation disrupts thyroid hormone synthesis. The newly identified missense mutation will contribute to effective selective breeding of red sea bream to purge the causative gene of the undesirable phenotype and improve seed production of red sea bream as well as provide basic information of the mechanisms of thyroid hormones and its related diseases in fish and humans.
Project description:To elucidate drug deposition and metabolism in cultured marine fishes, in a previous study we isolated and purified the GSTs (glutathione S-transferases) from the hepatopancreas of the red sea bream Pagrus major that contained 25 and 28 kDa GST subunits. The 25 kDa GST subunits encoded by two genes (GSTA1 and GSTA2) have been identified as Alpha-class GSTs. In the present study, we performed the molecular cloning and characterization of the GSTR1 gene encoding the 28 kDa GST subunit from the Pa. major hepatopancreas. The nucleotide sequence of GSTR1 was composed of an ORF (open reading frame) of 675 bp encoding a protein of 225 residues with a predicted molecular mass of 25.925 Da. A search of the BLAST protein database revealed that the deduced amino acid sequence of GSTR1 was structurally similar to that of GSTs derived from other fishes such as largemouth bass (Micropterus salmoides) and plaice (Pleuronectes platessa). The genomic DNA containing the GSTR1 gene was found to consist of six exons and five introns quite distinct from mammalian Theta-class GSTs. We have purified and characterized the recombinant GSTR1 enzyme (pmGSTR1-1) which showed activity only towards 1-chloro-2,4-dinitrobenzene, although it had no detectable activity towards cumene hydroperoxide, 1,2-dichloro-4-nitrobenzene, ethacrynic acid, 4-hydroxynonenal and p-nitrobenzyl chloride. Moreover, pmGSTR1-1 revealed remarkable heat instability (melting temperature Tm=30.3+/-0.11 degrees C). Collectively, our results indicated that the characteristic GST genes including GSTR1 have been conserved and functional in fishes. Therefore we designate them 'Rho-class', a new class of GSTs.
| S-EPMC1186719 | biostudies-literature
Project description:Intestinal microbiota of red sea bream (Pagrus major)