Project description:Morphological identification of ancient bone is often problematic due to heavy fragmentation that generally influences zooarchaeological assemblages. Fish bones are more taphonomically sensitive than those of other vertebrates as they are typically smaller and less biomineralised. Thus, taxonomic identification based on the preservation of morphological features is often extremely limited and can reduce or eliminate the usefulness of an assemblage for inferring taxon information. Currently, one of the most time- and cost-efficient methods of achieving faunal identity from ancient bone is by the collagen fingerprinting technique known as ZooMS (Zooarchaeology by Mass Spectrometry). ZooMS harnesses the potential of preserved collagen, which is the most dominant and time-stable protein in bone. In this research, ZooMS is applied to ancient Baltic region fish assemblages that are between 500 and 6000 years old in order to define species identity and construct assemblage compositions. Alongside inferences into environmental and biological shifts from the Neolithic era to present day in the Baltic region, we demonstrate for the first time the ability to distinguish between recently diverged members of the Salmo (salmon) and Scophthalmus (turbot) genera. ZooMS analysis highlights 7% of the collagen-containing assemblage as having been morphologically identified incorrectly and has facilitated taxonomic refinement of a further 28% of samples, including some of the morphologically indeterminate bone fragments. This research emphasises the great potential of ZooMS in identifying ichthyoarchaeological bone remains to species-level, and provides a case for the use of collagen fingerprinting in contributing to baseline fisheries and ecological data, to inform modern management.
Project description:Atlantic salmon individuals were grown, from fresh water to salt water in tanks on diets with low fish meal (10%) and 1-1.25% total n-3 LC-PUFA levels. Dietary n-3 LC-PUFAs were supplemented by 1) fish oil (FO), 2) Schyzochytrium limacinum biomass (AA). Further, the fish from all treatments were mixed and redistributed in sea cages reared to slaughter (ca. 3kg body weight) on either FO or AA. Transcriptomics analyses in liver and intestinal tissues revealed significant dietary effects on the expression of immune modulating, as well as ion, lipid, protein and xenobiotic metabolism genes.
Project description:Paget disease of bone (PDB) is a chronic skeletal disorder with contemporary cases characterised by one or a few affected bones in individuals over 55 years of age. PDB-like changes have been noted in archaeological remains as old as Roman although accurate diagnoses and knowledge of the natural history of ancient forms of the disease are lacking. Previous macroscopic and radiographic analyses of six skeletons from a collection of 130 excavated at Norton Priory in Cheshire, UK, and dating to late Medieval times, noted unusually extensive pathological changes resembling PDB affecting up to 75% of individual skeletons. Here we report the prevalence of the disease in the collection is also remarkably high (at least 15.8% of the adult sample) with age-at-death estimations as low as 35 years. Despite these profound phenotypic differences paleoproteomic analyses identified SQSTM1/p62 (p62), a protein central to the pathological milieu of classical PDB, as one of the few non-collagenous human sequences preserved in skeletal samples, indicating that the disorder was likely an ancient precursor of contemporary PDB. Western blotting indicated abnormal migration of ancient p62 protein, with subsequent targeted proteomic analyses detecting more than 60% of the p62 primary sequence and directing sequencing analyses of ancient DNA that excluded contemporary PDB-associated SQSTM1 mutations. Together our observations indicate the ancient p62 protein is likely modified within its C-terminal ubiquitin-associated (UBA) domain. Ancient miRNAs were also remarkably well preserved in an osteosarcoma from a skeleton with extensive disease, with miR-16 expression changes consistent with that reported in contemporary PDB-associated bone tumours. Our work demonstrates the potential of proteomics to inform diagnoses of ancient disease and supports the proposal that Medieval Norton Priory was a ‘hotspot’ for an ancient form of PDB, with unusual features presumably potentiated by as yet unidentified environmental or genetic factors.
Project description:Purpose: To identify, using RNA-sequencing, differentially expressed genes in the white adipose tissue in obesity and in response to lipid intervention in both normal weight and obese individuals. Methods: White adipose tissue mRNA profiles of normal weight and obses humans at baseline (0-weeks) and 12-weeks after fish oil (3d/day of which 1.1g EPA and 0.8g DHA) or corn oil (3g/day) supplementation were generated by deep sequencing using RNA sequencing. The sequence reads that passed quality filters were aligned to the human genome using TopHat and analyzed at the gene level using DESeq2. qRT–PCR validation was performed using Taqman probe assays Results: Using an optimized data analysis workflow, we mapped reads to the human genome (hg38.0) and identified 789 genes differentially expressed between normal weight and obese individuals at baseline (week-0) (adjusted p value <0.05 and fold change >2). 623 of these were upregulated and 175 were downregulated. Geneset enrichment analysis identified several enriched pathways, including regulation of immune and inflammatory response, tissue growth and glucose metabolism in obese indvidiuals in comparison to normal weight. We identified 26 genes differentially expressed in normal weight individuals in response to fish oil intervention (week-12) (adjusted p value <0.05 and fold change >1). 14 of these were upregulated and 12 were downregulated. We identified 8 genes differentially expressed in obese individuals in response to fish oil intervention (week-12) (adjusted p value <0.05 and fold change >1). 3 of these were upregulated and 5 were downregulated. Geneset enrichment analysis identified several enriched pathways, including regulation of immune and inflammatory response in both normal weight and obese individuals in response to fish oil intervention with greater effects in normal weight individuals. Conclusions: Our study provides novel insights into the association of obesity and changes to the human white adipose tissue transcriptome, in addition to the effects of fish oil (EPA and DHA) on the transcriptome of normal weight and obese individuals and differences in response between these BMI subgroups. Our study further identifies putative gene targets and molecular pathways that help to understand how obesity results in adipose tissue dysfunction and how EPA and DHA may modulate the long term expression of gene networks and disease pathways related to onset of obesity associated inflammation.
Project description:Studies of ancient DNA have revolutionized our understanding of extinct organisms, but thus far the maximum estimated age of sequenced DNA is two million years. However, evidence for endogenous biomolecules, including proteins, lipids, and pigments have been found in much older fossils, dating to up to 195 million years. Amino acid sequence data consistent with ancient, endogenous biomolecules have been derived from specimens of the theropod Tyrannosaurus rex (MOR 1125) and the hadrosaur Brachylophosaurus canadensis (MOR 2598). Histochemical and immunological studies also identified a molecule consistent with DNA in these two ancient specimens, localized to a single point within preserved osteocytes. Here we report the sequencing and analysis of DNA extracted from osteocytes and blood vessels of T. rex and B. canadensis, liberated after demineralization of dense cortical bone. Usable sequence reads were obtained at a low recovery rate. After the removal of high-quality reads that mapped to the human genome, the remaining reads were highly fragmented, with similarities to multiple animal species including reptilian and avian genomes. Our findings support the hypothesis that DNA and histone signal from imaging, mass spectrometry, and DNA sequencing of dinosaur osteocytes are endogenously preserved biomolecules.
Project description:4C-seq experiments to study the evolution of the chromatin architecture of ancient gene regulatory blocks at the origin of vertebrates.
Project description:Whereas the gill chambers of extant jawless vertebrates (lampreys and hagfish) open directly into the environment, jawed vertebrates have evolved skeletal appendages that promote the unidirectional flow of oxygenated water over the gills. A major anatomical difference between the two jawed vertebrate lineages is the presence of a single operculum covering a large common gill cavity in bony fishes versus separate covers for each gill chamber in cartilaginous fishes. Here we find that these divergent gill cover patterns correlate with the pharyngeal arch expression of Pou3f3 orthologs, and we identify a deeply conserved Pou3f3 arch enhancer that is present in nearly all jawed vertebrates but undetectable in lampreys. Despite only minor sequence differences, bony fish and cartilaginous fish versions of this enhancer are sufficient to drive the respective single versus multiple gill arch expression. In zebrafish, loss of Pou3f3 gene function or its conserved enhancer disrupts gill cover formation. Conversely, forced expression of Pou3f3b in the gill arches generates ectopic skeletal elements reminiscent of the multiple gill covers of cartilaginous fish. Emergence and modification of this ancient Pou3f3 enhancer may thus have contributed to the acquisition and diversification of gill covers during early gnathostome evolution.