Project description:This dataset contains raw files for metabolites collected from the soil and roots of four wetland plant species under non-sterile conditions, both in soil and hydroponically, during the day and night time periods.
Project description:Land use intensification is associated with loss of biodiversity and altered ecosystem functioning. Until now most studies on the relationship between biodiversity and ecosystem functioning focused on random loss of species, while loss of rare species that usually are the first to disappear received less attention. Here we test if the effect of rare microbial species loss on plant productivity depends on the origin of the microbial soil community. Soils were sampled from three land use types at two farms. Microbial communities with increasing loss of rare species were created by inoculating sterilized soils with serially diluted soil suspensions. After 8 months of incubation, the effects of the different soil communities on abiotic soil properties, soil processes, microbial community composition, and plant productivity was measured. Dilution treatments resulted in increasing species loss, which was in relation to abundance of bacteria in the original field soil, without affecting most of the other soil parameters and processes. Microbial species loss affected plant biomass positively, negatively or not at all, depending on soil origin, but not on land use history. Even within fields the effects of dilution on plant biomass varied between replicates, suggesting heterogeneity in microbial community composition. The effects of medium and severe species loss on plant biomass were similar, pointing toward a saturating effect of species loss. We conclude that changes in the composition of the soil microbial community, including rare species loss, can affect plant productivity, depending on the composition of the initial microbial community. Future work on the relation between function and species loss effects should address this variation by including multiple sampling origins.
Project description:The association between soil microbes and plant roots is present in all natural and agricultural environments. Microbes can be beneficial, pathogenic, or neutral to the host plant development and adaptation to abiotic or biotic stresses. Progress in investigating the functions and changes in microbial communities in diverse environments have been rapidly developing in recent years, but the changes in root function is still largely understudied. The aim of this study was to determine how soil bacteria influence maize root transcription and microRNAs (miRNAs) populations in a controlled inoculation of known microbes over a defined time course. At each time point after inoculation of the maize inbred line B73 with ten bacterial isolates, DNA and RNA were isolated from roots. The V4 region of the 16S rRNA gene was amplified from the DNA and sequenced with the Illumina MiSeq platform. Amplicon sequencing of the 16S rRNA gene indicated that most of the microbes successfully colonized maize roots. The colonization was dynamic over time and varied with the specific bacterial isolate. Small RNA sequencing and mRNA-Seq was done to capture changes in the root transcriptome from 0.5 to 480 hours after inoculation. The transcriptome and small RNA analyses revealed epigenetic and transcriptional changes in roots due to the microbial inoculation. This research provides the foundational data needed to understand how plant roots interact with bacterial partners and will be used to develop predictive models for root response to bacteria.
Project description:Understanding the mechanisms underlying the establishment of invasive plants is critical in community ecology. According to a widely accepted theory, plant-soil-microbe interactions mediate the effects of invasive plants on native species, thereby affecting invasion success. However, the roles and molecular mechanisms associated with such microbes remain elusive. Using high throughput sequencing and a functional gene microarray, we found that soil taxonomic and functional microbial communities in plots dominated by Ageratina adenophora developed to benefit the invasive plant. There were increases in nitrogen-fixing bacteria and labile carbon degraders, as well as soil-borne pathogens in bulk soil, which potentially suppressed native plant growth. Meanwhile, there was an increase of microbial antagonism in the A. adenophora rhizosphere, which could inhibit pathogenicity against plant invader. These results suggest that the invasive plant A. adenophora establishes a self-reinforcing soil environment by changing the soil microbial community. It could be defined as a ‘bodyguard/mercenary army’ strategy for invasive plants, which has important insights for the mitigation of plant invasion.
Project description:To unravel complex dynamics of environmental disturbance and microbial metabolic activities, we set up laboratory microcosms to investigate the effects of SO42- and O2 alone or in combination on microbial activities and interactions, as well as the resulting fate of carbon within wetland soil. We used proteogenomics to characterize the biochemical and physiological responses of microbial communities to individual perturbations and their combined effects. Stoichiometric models were employed to deconvolute carbon exchanges among the main functional guilds. These findings can contribute to the development of mechanistic models for predicting greenhouse gas emissions from wetland ecosystems under various climate change scenarios.
Project description:Custom made functional gene micoarray (E-FGA) consisting of 13,056 mRNA-enriched anonymus microbial clones from dirverse microbial communities to profile microbial gene transcript in agricultural soils with low and high flux of N2O. A total of 96 genes displayed expression that differed significantly between low and high N2O emitting soils. Creation and validation of an cDNA microarray from environmental microbial mRNA, to use as a monitoring tool for microbial gene expression Microbial expression profiles comparing two high N2O-emitting sites (3 soil replicates and microarrays each) and two low N2O-emitting sites (3 soil replicates and microarray each) from sugarcane site in Mackay, Australia
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments.
Project description:The gut microbiome shapes local and systemic immunity. The liver is presumed to be a protected sterile site. As such, a hepatic microbiome has not been examined. Here, we show that the liver hosts a robust microbiome in mice and humans that is distinct from the gut and is enriched in Proteobacteria. It undergoes dynamic alterations with age and is influenced by the environment and host physiology. Fecal microbial transfer experiments revealed that the liver microbiome is populated from the gut in a highly selective manner. Hepatic immunity is dependent on the microbiome, specifically Bacteroidetes species. Targeting Bacteroidetes with oral antibiotics reduced the hepatic immune cell infiltrate by ~90%, prevented APC maturation, and mitigated adaptive immunity. Mechanistically, presentation of Bacteroidetes-derived glycosphingolipids to NKT cells promotes CCL5 signaling, which drives hepatic leukocyte expansion and maturation. Collectively, we reveal a microbial – glycosphingolipid – NKT – CCL5 axis that underlies hepatic immunity.
Project description:Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties, plant and microbial communities, in particular microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38-137% in response to either clipping or the combined treatment, which could weaken the long-term soil carbon stability and trigger a positive feedback to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization and denitrification by 32-39%. The potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium caused by clipping alone, and contribute to unchanged plant biomass. Moreover, clipping tended to interact antagonistically with warming, especially on nitrogen cycling genes, demonstrating that single factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties, as well as the abundance and structure of soil microbial functional genes. The aboveground biomass removal for biofuel production needs to be re-considered as the long-term soil carbon stability may be weakened.