Project description:BackgroundMetagenomic next-generation sequencing (mNGS) technology has been widely used to diagnose various infections. Based on the most common pathogen profiles, targeted mNGS (tNGS) using multiplex PCR has been developed to detect pathogens with predesigned primers in the panel, significantly improving sensitivity and reducing economic burden on patients. However, there are few studies on summarizing pathogen profiles of pulmonary infections in immunocompetent and immunocompromised patients in Jilin Province of China on large scale.MethodsFrom January 2021 to December 2023, bronchoalveolar lavage fluid (BALF) or sputum samples from 546 immunocompetent and immunocompromised patients with suspected community-acquired pneumonia were collected. Pathogen profiles in those patients on whom mNGS was performed were summarized. Additionally, we also evaluated the performance of tNGS in diagnosing pulmonary infections.ResultsCombined with results of mNGS and culture, we found that the most common bacterial pathogens were Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii in both immunocompromised and immunocompetent patients with high detection rates of Staphylococcus aureus and Enterococcus faecium, respectively. For fungal pathogens, Pneumocystis jirovecii was commonly detected in patients, while fungal infections in immunocompetent patients were mainly caused by Candida albicans. Most of viral infections in patients were caused by Human betaherpesvirus 5 and Human gammaherpesvirus 4. It is worth noting that, compared with immunocompetent patients (34.9%, 76/218), more mixed infections were found in immunocompromised patients (37.8%, 14/37). Additionally, taking final comprehensive clinical diagnoses as reference standard, total coincidence rate of BALF tNGS (81.4%, 48/59) was much higher than that of BALF mNGS (40.0%, 112/280).ConclusionsOur findings supplemented and classified the pathogen profiles of pulmonary infections in immunocompetent and immunocompromised patients in Jilin Province of China. Most importantly, our findings can accelerate the development and design of tNGS specifically used for regional pulmonary infections.
Project description:A diagnosis of brucellosis can be difficult because routine culture and serological methods exhibit variable sensitivity and specificity. We present the use of a metagenomic next- generation sequencing assay to diagnose a case of neurobrucellosis from cerebrospinal fluid, resulting in the institution of appropriate antibiotic treatment and a favorable clinical outcome.
Project description:Importance:Identifying infectious causes of subacute or chronic meningitis can be challenging. Enhanced, unbiased diagnostic approaches are needed. Objective:To present a case series of patients with diagnostically challenging subacute or chronic meningitis using metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) supported by a statistical framework generated from mNGS of control samples from the environment and from patients who were noninfectious. Design, Setting, and Participants:In this case series, mNGS data obtained from the CSF of 94 patients with noninfectious neuroinflammatory disorders and from 24 water and reagent control samples were used to develop and implement a weighted scoring metric based on z scores at the species and genus levels for both nucleotide and protein alignments to prioritize and rank the mNGS results. Total RNA was extracted for mNGS from the CSF of 7 participants with subacute or chronic meningitis who were recruited between September 2013 and March 2017 as part of a multicenter study of mNGS pathogen discovery among patients with suspected neuroinflammatory conditions. The neurologic infections identified by mNGS in these 7 participants represented a diverse array of pathogens. The patients were referred from the University of California, San Francisco Medical Center (n = 2), Zuckerberg San Francisco General Hospital and Trauma Center (n = 2), Cleveland Clinic (n = 1), University of Washington (n = 1), and Kaiser Permanente (n = 1). A weighted z score was used to filter out environmental contaminants and facilitate efficient data triage and analysis. Main Outcomes and Measures:Pathogens identified by mNGS and the ability of a statistical model to prioritize, rank, and simplify mNGS results. Results:The 7 participants ranged in age from 10 to 55 years, and 3 (43%) were female. A parasitic worm (Taenia solium, in 2 participants), a virus (HIV-1), and 4 fungi (Cryptococcus neoformans, Aspergillus oryzae, Histoplasma capsulatum, and Candida dubliniensis) were identified among the 7 participants by using mNGS. Evaluating mNGS data with a weighted z score-based scoring algorithm reduced the reported microbial taxa by a mean of 87% (range, 41%-99%) when taxa with a combined score of 0 or less were removed, effectively separating bona fide pathogen sequences from spurious environmental sequences so that, in each case, the causative pathogen was found within the top 2 scoring microbes identified using the algorithm. Conclusions and Relevance:Diverse microbial pathogens were identified by mNGS in the CSF of patients with diagnostically challenging subacute or chronic meningitis, including a case of subarachnoid neurocysticercosis that defied diagnosis for 1 year, the first reported case of CNS vasculitis caused by Aspergillus oryzae, and the fourth reported case of C dubliniensis meningitis. Prioritizing metagenomic data with a scoring algorithm greatly clarified data interpretation and highlighted the problem of attributing biological significance to organisms present in control samples used for metagenomic sequencing studies.
Project description:Metagenomic next-generation sequencing (mNGS) is increasingly being applied in clinical laboratories for unbiased culture-independent diagnosis. We use the mNGS as a routine diagnostic test in clinical.
Project description:Emergomyces is a newly described dimorphic fungus genus; it may cause fatal infections in immunocompromised patients, but diagnosis is often delayed. We report a case of disseminated emergomycosis caused by the novel species Emergomyces orientalis in a kidney transplant recipient from Tibet. Infection was diagnosed early by metagenomic next-generation sequencing.
Project description:BackgroundMetagenomic next-generation sequencing (mNGS) is emerging as a promising technique for pathogens detection. However, reports on the application of mNGS in mixed pulmonary infection remain scarce.MethodsFrom July 2018 to March 2019, 55 cases were enrolled in this retrospective analysis. Cases were classified into mixed pulmonary infection (36 [65.5%]) and non-mixed pulmonary infection (19 [34.5%]) according to primary diagnoses. The performances of mNGS and conventional test on mixed pulmonary infection diagnosis and pathogen identification were compared.ResultsThe sensitivity of mNGS in mixed pulmonary infection diagnosis was much higher than that of conventional test (97.2% vs 13.9%; P < 0.01), but the specificity was the opposite (63.2% vs 94.7%; P = 0.07). The positive predictive value of mNGS was 83.3% (95% CI, 68.0-92.5%), and the negative predictive value was 92.3% (95% CI, 62.1-99.6%). A total of 5 (9.1%) cases were identified as mixed pulmonary infection by both conventional tests and mNGS, however, the pathogens identification results were consistent between these two methods in only 1 (1.8%) case. In summary, the pathogens detected by mNGS in 3 (5.5%) cases were consistent with those by conventional test, and only 1 (1.8%) case was mixed pulmonary infection. According to our data, mNGS had a broader spectrum for pathogen detection than conventional tests. In particular, application of mNGS improved the diagnosis of pulmonary fungal infections. Within the 55 cases, mNGS detected and identified fungi in 31 (56.4%) cases, of which only 10 (18.2%) cases were positive for the same fungi by conventional test. The most common pathogen detected by mNGS was Human cytomegalovirus in our study, which was identified in 19 (34.5%) cases of mixed pulmonary infection. Human cytomegalovirus and Pneumocystis jirovecii, which were detected in 7 (12.7%) cases, were the most common co-pathogens in the group of mixed pulmonary infection.ConclusionsmNGS is a promising technique to detect co-pathogens in mixed pulmonary infection, with potential benefits in speed and sensitivity.Trial registration(retrospectively registered): ChiCTR1900023727. Registrated 9 JUNE 2019.
Project description:Due to the complexity of the protocols and a limited knowledge of the nature of microbial communities, simulating metagenomic sequences plays an important role in testing the performance of existing tools and data analysis methods with metagenomic data. We developed metagenomic read simulators with platform-specific (Sanger, pyrosequencing, Illumina) base-error models, and simulated metagenomes of differing community complexities. We first evaluated the effect of rigorous quality control on Illumina data. Although quality filtering removed a large proportion of the data, it greatly improved the accuracy and contig lengths of resulting assemblies. We then compared the quality-trimmed Illumina assemblies to those from Sanger and pyrosequencing. For the simple community (10 genomes) all sequencing technologies assembled a similar amount and accurately represented the expected functional composition. For the more complex community (100 genomes) Illumina produced the best assemblies and more correctly resembled the expected functional composition. For the most complex community (400 genomes) there was very little assembly of reads from any sequencing technology. However, due to the longer read length the Sanger reads still represented the overall functional composition reasonably well. We further examined the effect of scaffolding of contigs using paired-end Illumina reads. It dramatically increased contig lengths of the simple community and yielded minor improvements to the more complex communities. Although the increase in contig length was accompanied by increased chimericity, it resulted in more complete genes and a better characterization of the functional repertoire. The metagenomic simulators developed for this research are freely available.
Project description:Objectives: To evaluate metagenomic next-generation sequencing (mNGS) as a diagnostic tool in detecting pathogens from osteoarticular infection (OAI) samples. Methods: 130 samples of joint fluid, sonicate fluid, and tissue were prospectively collected from 92 patients with OAI. The performance of mNGS and microbiology culture was compared pairwise. Results: The overall sensitivity of mNGS was 88.5% (115/130), significantly higher than that of microbiological culture, which had a sensitivity of 69.2% (90/130, p < 0.01). Sensitivity was significantly higher for joint fluid (mNGS: 86.7% vs. microbiology culture: 68.7%, p < 0.01) and sonicate fluid (mNGS: 100% vs. microbiology culture: 66.7%, p < 0.05) samples. mNGS detected 12 pathogenic strains undetected by microbiological culture. Additional pathogens detected by mNGS were Coagulase-negative Staphylococci, Gram-negative Bacillus, Streptococci, Anaerobe, non-tuberculosis mycobacterium, MTCP (p > 0.05), and Mycoplasma (OR = ∞, 95% confidence interval, 5.12-∞, p < 0.001). Additionally, sensitivity by mNGS was higher in antibiotic-treated samples compared to microbiological culture (89.7 vs. 61.5%, p < 0.01). Conclusions: mNGS is a robust diagnostic tool for pathogenic detection in samples from OAI patients, compared to routine cultures. The mNGS technique is particularly valuable to diagnose pathogens that are difficult to be cultured, or to test samples from patients previously treated with antibiotics.
Project description:We report a case of Anncaliia algerae microsporidia infection in an immunosuppressed kidney transplant recipient in China. Light microscopy and transmission electron microscopy initially failed to identify A. algerae, which eventually was detected by metagenomic next-generation sequencing. Our case highlights the supporting role of metagenomic sequencing in early identification of uncommon pathogens.