Project description:Copper has long been applied for agricultural practices. Like other metals, copper is highly persistent in the environment and biologically active long after its use has ceased. Here we present a unique study on the long-term effects (27 years) of copper and pH on soil microbial communities and on Folsomia candida, an important representative of the soil macrofauna, in an experiment with a full factorial, random block design. Bacterial communities were mostly affected by pH. These effects were prominent in Acidobacteria, while Actinobacteria and Gammaroteobacteria communities were affected by original and bioavailable copper. Reproduction and survival of the collembolan F. candida was not affected by the studied copper concentrations. However, the transcriptomic responses to copper reflected a mechanism of copper transport and detoxification, while pH exerted effects on nucleotide and protein metabolism and (acute) inflammatory response. We conclude that microbial community structure explained the history of copper contamination, while gene expression analysis of F. candida is associated with the current level of bioavailable copper. Combined analysis at various trophic levels is highly relevant in the context of assessing long-term soil pollution.
Project description:The spread of antibiotic resistance genes (ARG) into agricultural soils, products, and foods severely limits the use of organic fertilizers in agriculture. In this study, experimental land plots were fertilized, sown, and harvested for two consecutive agricultural cycles using either mineral or three types of organic fertilizers: sewage sludge, pig slurry, or composted organic fraction of municipal solid waste. The analysis of the relative abundances of more than 200,000 ASV (Amplicon Sequence Variants) allowed the identification of a small, but significant (<10%) overlap between soil and fertilizer microbiomes, particularly in soils sampled the same day of the harvest (post-harvest soils). Loads of clinically relevant ARG were significantly higher (up to 100 fold) in fertilized soils relative to the initial soil. The highest increases corresponded to post-harvest soils treated with organic fertilizers, and they correlated with the extend of the contribution of fertilizers to the soil microbiome. Edible products (lettuce and radish) showed low, but measurable loads of ARG (sul1 for lettuces and radish, tetM for lettuces). These loads were minimal in mineral fertilized soils, and strongly dependent on the type of fertilizer. We concluded that at least part of the observed increase on ARG loads in soils and foodstuffs were actual contributions from the fertilizer microbiomes. Thus, we propose that adequate waste management and good pharmacological and veterinarian practices may significantly reduce the potential health risk posed by the presence of ARG in agricultural soils and plant products.
Project description:Polycyclic aromatic hydrocarbons (PAHs), some of the most widespread organic contaminants, are highly toxic to soil microorganisms. Whether long-term polluted soils can still respond to the fresh input of pollutants is unknown. In this study, the soil enzyme activity, soil microbial community structure and function and microbial metabolism pathways were examined to systematically investigate the responses of soil microorganisms to fresh PAH stress. Microbial activity as determined by soil dehydrogenase and urease activity was inhibited upon microbe exposure to PAH stress. In addition, the soil microbial community and function were obviously shifted under PAH stress. Both microbial diversity and richness were decreased by PAH stress. Rhizobacter, Sphingobium, Mycobacterium, Massilia, Bacillus and Pseudarthrobacter were significantly affected by PAH stress and can be considered important indicators of PAH contamination in agricultural soils. Moreover, the majority of microbial metabolic function predicted to respond to PAH stress were affected adversely. Finally, soil metabolomics further revealed specific inhibition of soil metabolism pathways associated with fatty acids, carbohydrates and amino acids. Therefore, the soil metabolic composition distinctively changed, reflecting a change in the soil metabolism. In summary, fresh contaminant introduction into long-term polluted soils inhibited microbial activity and metabolism, which might profoundly affect the whole soil quality.
Project description:Copper has long been applied for agricultural practices. Like other metals, copper is highly persistent in the environment and biologically active long after its use has ceased. Here we present a unique study on the long-term effects (27 years) of copper and pH on soil microbial communities and on Folsomia candida, an important representative of the soil macrofauna, in an experiment with a full factorial, random block design. Bacterial communities were mostly affected by pH. These effects were prominent in Acidobacteria, while Actinobacteria and Gammaroteobacteria communities were affected by original and bioavailable copper. Reproduction and survival of the collembolan F. candida was not affected by the studied copper concentrations. However, the transcriptomic responses to copper reflected a mechanism of copper transport and detoxification, while pH exerted effects on nucleotide and protein metabolism and (acute) inflammatory response. We conclude that microbial community structure explained the history of copper contamination, while gene expression analysis of F. candida is associated with the current level of bioavailable copper. Combined analysis at various trophic levels is highly relevant in the context of assessing long-term soil pollution. A single channel, interwoven loop design was used to test animals exposed to the copper-spiked field soil samples. The field soil was spiked with 4 copper and 4 pH treatments yielding 16 combinations. Combinations are displayed in the Sample descriptions, with 1 M-bM-^@M-^S 4 representing the copper concentrations from low to high, and A-D representing the soil pH from low to high. 4 biological replicates per copper/pH combination were used. Each replicate contained 25 grams of soil and thirty 23-day-old animals.
Project description:Anaerobic digestion (AD) is a core technology in management of urban organic wastes, converting a fraction of the organic carbon to methane and the residual digestate, the biorest, have a great potential to become a major organic fertilizer for agricultural soils in the future. At the same time, mitigation of N2O-emissions from the agricultural soils is needed to reduce the climate forcing by food production. Our goal was therefore to enrich for N2O reducing bacteria in AD digestates prior to fertilization, and in this way provide an avenue for large-scale and low-cost cultivation of strongly N2O reducing bacteria which can be directly introduced to agricultural soils in large enough volumes to alter the fate of nitrogen in the soils. Gas kinetics and meta-omics (metagenomics and metaproteomics) analyses of the N2O enriched digestates identified populations of N2O respiring organisms that grew by harvesting fermentation intermediates of the methanogenic consortium.
Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
Project description:Two-stage channels are a relatively new best management practice design used to treat nonpoint pollution. Soils collected from these channels in agricultural ditches were analyzed to elucidate the microbial functionality of the system.
Project description:Bile acids are steroid compounds from the digestive tracts of vertebrates that enter agricultural environments in unusual high amounts with manure. Bacteria degrading bile acids can readily be isolated from soils and waters including agricultural areas. Under laboratory conditions, these bacteria transiently release steroid compounds as degradation intermediates into the environment. These compounds include androstadienediones (ADDs), which are C19-steroids with potential hormonal effects. Experiments with Caenorhabditis elegans showed that ADDs derived from bacterial bile acid degradation had effects on its tactile response, reproduction rate, and developmental speed. Additional experiments with a deletion mutant as well as transcriptomic analyses revealed that these effects might be conveyed by the putative testosterone receptor NHR-69. Soil microcosms showed that the natural microflora of agricultural soil is readily induced for bile acid degradation accompanied by the transient release of steroid intermediates. Establishment of a model system with a Pseudomonas strain and C. elegans in sand microcosms indicated transient release of ADDs during the course of bile acid degradation and negative effects on the reproduction rate of the nematode. This proof-of-principle study points at bacterial degradation of manure-derived bile acids as a potential and so-far overlooked risk for invertebrates in agricultural soils.
Project description:Custom made functional gene micoarray (E-FGA) consisting of 13,056 mRNA-enriched anonymus microbial clones from dirverse microbial communities to profile microbial gene transcript in agricultural soils with low and high flux of N2O. A total of 96 genes displayed expression that differed significantly between low and high N2O emitting soils. Creation and validation of an cDNA microarray from environmental microbial mRNA, to use as a monitoring tool for microbial gene expression