Project description:Investigation of how gene expression and epigenetics contribute to conservation of birth weight at high altitudes by examining mRNA and DNA methylation differences between placentas of indigenous Andeans and placentas of European descent residing at high and low altitude
Project description:We used in silico analyses to identify the distinct transcriptome signatures of two populations living at high altitudes and identified potential mechanisms that underlie high-altitude adaptation. Data generated in this study indicate that placentas from Tibetan women are genetically distinct from European women at high altitudes, and appear to be protected from hypoxia and stress.
Project description:We used in silico analyses to identify the distinct transcriptome signatures of two populations living at high altitudes and identified potential mechanisms that underlie high-altitude adaptation. Data generated in this study indicate that placentas from Tibetan women are genetically distinct from European women at high altitudes, and appear to be protected from hypoxia and stress.
Project description:Understanding molecular mechanism associated with high altitude exposure during acclimatization/adaptation/maladaptation. Data reveals specific components of the complex molecular circuitry underlying high altitude pulmonary edema. Individualized outcome prediction were constructed through expression profiling of 39400 genes in sea level sojourners who were acclimatized to high altitude and grouped as controls (n=14), high altitude natives (n=14) and individuals who developed high altitude pulmonary edema within 48-72 hours after air induction to high altitude (n=17).
Project description:Additional to GSE1807 A comparative analysis, by expression profiling of maize, was performed to identify novel components in the mechanisms of maize responses to UV-B. Five high-altitude landraces grown from 2,000 to 3,400 m naturally receive higher UV-B fluence than plants at lower altitudes and similar latitudes. These high-altitude landraces were compared directly with a low-altitude line and with literature reports for other temperate maize lines. A microarray analysis demonstrated that among the UV-B responsive transcripts, several types of gene implicated in chromatin remodeling are differentially expressed before and after UV-B treatment in high-altitude lines. RNAi transgenic plants with lower expression of four such chromatin-associated genes exhibited hypersensitivity to UV-B by measurements of leaf arching, increased leaf chlorosis and necrosis, and altered UV-B regulation of selected genes. These results collectively suggest that genes involved in chromatin remodeling are crucial for UV-B acclimation and that some high-altitude lines exhibit adaptations to this challenge.
Project description:Whole blood samples were collected from seven elite female skaters on the peak of altitude adaptation (day 18), before and after ~ 1h long exercise. Samples were globin-depleted and polyA-selected, converted to cDNA, and sequenced using Illumina paired-end reads (12-40M reads).
Project description:Purpose: High-altitude adaptive evolution of transcription, and the convergence and divergence of transcriptional alteration across species in response to high-altitude environments, is an important topic of broad interest to the general biology community. Our study aims to answer this important biological question. Methods: We generated deep transcriptome data of high- and low- altitude populations across four species: chicken, pig, goat and sheep, as well as high-altitude yak and low-altitude cattle, from six tissues (heart, kidney, liver, lung, skeletal muscle and spleen). Results: Here we provide a comprehensive comparative transcriptome landscape of expression and alternative splicing variation between low- and high-altitude populations across multiple species for distinct tissues. Conclusions: Our data serves a valuable resource for further study on adaptive transcription evolution and identification of candidate adaptive genes.
Project description:Altitude acclimatization is the physiological process to restore oxygen delivery to the tissues and promote the oxygen application under high altitude hypoxia. High altitude illness could happen in individuals who did not get acclimatization. Unraveling the molecular underpinnings of altitude acclimatization would help people to understand the beneficial response of body to high altitude hypoxia and disturbed biological process in un-acclimatized individuals. Here, we measured physiological adjustments and circulating microRNAs (cmiRNAs) profiles of individuals exposed to high altitude to explore the altitude acclimatization in humans.
Project description:This study evaluates genetic and phenotypic variation in the intermediate altitude Calchaquà population living in the Calchaquà Valleys of the Argentinean Andes in the town of Cachi at 2300 m. This study attempts to pinpoint evolutionary mechanisms underlying adaptation to moderate hypoxia at a intermediate altitude. DNA from 24 saliva samples of CalchaquÃes living at 2300 m in Cachi in the Province of Salta in Argentina was genotyped.