Project description:Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals1. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.
Project description:For the past few years, researchers in the Human Pangenome Reference Consortium (HPRC) have been working to catalog almost all human genomic diversity. Frazer and Schork preview an article recently published in Nature, "A draft human pangenome reference,"1 which represents the initial release of 47 fully phased diploid assemblies of genomes of individuals with diverse ancestries.
Project description:In March 2019, 45 scientists and software engineers from around the world converged at the University of California, Santa Cruz for the first pangenomics codeathon. The purpose of the meeting was to propose technical specifications and standards for a usable human pangenome as well as to build relevant tools for genome graph infrastructures. During the meeting, the group held several intense and productive discussions covering a diverse set of topics, including advantages of graph genomes over a linear reference representation, design of new methods that can leverage graph-based data structures, and novel visualization and annotation approaches for pangenomes. Additionally, the participants self-organized themselves into teams that worked intensely over a three-day period to build a set of pipelines and tools for specific pangenomic applications. A summary of the questions raised and the tools developed are reported in this manuscript.
Project description:Human genomics is witnessing an ongoing paradigm shift from a single reference sequence to a pangenome form, but populations of Asian ancestry are underrepresented. Here we present data from the first phase of the Chinese Pangenome Consortium, including a collection of 116 high-quality and haplotype-phased de novo assemblies based on 58 core samples representing 36 minority Chinese ethnic groups. With an average 30.65× high-fidelity long-read sequence coverage, an average contiguity N50 of more than 35.63 megabases and an average total size of 3.01 gigabases, the CPC core assemblies add 189 million base pairs of euchromatic polymorphic sequences and 1,367 protein-coding gene duplications to GRCh38. We identified 15.9 million small variants and 78,072 structural variants, of which 5.9 million small variants and 34,223 structural variants were not reported in a recently released pangenome reference1. The Chinese Pangenome Consortium data demonstrate a remarkable increase in the discovery of novel and missing sequences when individuals are included from underrepresented minority ethnic groups. The missing reference sequences were enriched with archaic-derived alleles and genes that confer essential functions related to keratinization, response to ultraviolet radiation, DNA repair, immunological responses and lifespan, implying great potential for shedding new light on human evolution and recovering missing heritability in complex disease mapping.
Project description:SummaryPangenomes are replacing single reference genomes as the definitive representation of DNA sequence within a species or clade. Pangenome analysis predominantly leverages graph-based methods that require computationally intensive multiple genome alignments, do not scale to highly complex eukaryotic genomes, limit their scope to identifying structural variants (SVs), or incur bias by relying on a reference genome. Here, we present PanKmer, a toolkit designed for reference-free analysis of pangenome datasets consisting of dozens to thousands of individual genomes. PanKmer decomposes a set of input genomes into a table of observed k-mers and their presence-absence values in each genome. These are stored in an efficient k-mer index data format that encodes SNPs, INDELs, and SVs. It also includes functions for downstream analysis of the k-mer index, such as calculating sequence similarity statistics between individuals at whole-genome or local scales. For example, k-mers can be "anchored" in any individual genome to quantify sequence variability or conservation at a specific locus. This facilitates workflows with various biological applications, e.g. identifying cases of hybridization between plant species. PanKmer provides researchers with a valuable and convenient means to explore the full scope of genetic variation in a population, without reference bias.Availability and implementationPanKmer is implemented as a Python package with components written in Rust, released under a BSD license. The source code is available from the Python Package Index (PyPI) at https://pypi.org/project/pankmer/ as well as Gitlab at https://gitlab.com/salk-tm/pankmer. Full documentation is available at https://salk-tm.gitlab.io/pankmer/.