Project description:Preclinical data support the investigation of PARP inhibitors in other neoplasms exhibiting homologous recombination deficiency (HRD) as monotherapy as well as in combination with chemotherapy. However,in colorectal cancer (CRC), the role of HRD alterations is mostly unknown. This study aims to explore the the Efficacy and Safety of Fluzoparib combined with Irinotecan in the Second-line treatment of HRD alterations metastatic colorectal cancer.
Project description:Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to PARP inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T-cell receptor profiles, along with validatory multimodal datasets from > 100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTreg) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC-II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Project description:Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to PARP inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T-cell receptor profiles, along with validatory multimodal datasets from > 100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTreg) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC-II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Project description:Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to PARP inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T-cell receptor profiles, along with validatory multimodal datasets from > 100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTreg) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC-II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Project description:Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to PARP inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T-cell receptor profiles, along with validatory multimodal datasets from > 100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTreg) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC-II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Project description:PurposeHomologous recombination DNA repair deficiency (HRD) is associated with sensitivity to platinum and poly (ADP-ribose) polymerase inhibitors in certain cancer types, including breast, ovarian, pancreatic, and prostate. In these cancers, BRCA1/2 alterations and genomic scar signatures are useful indicators for assessing HRD. However, alterations in other homologous recombination repair (HRR)-related genes and their clinical significance in other cancer types have not been adequately and systematically investigated.MethodsWe obtained data sets of all solid tumors in The Cancer Genome Atlas and comprehensively analyzed HRR pathway gene alterations, their loss-of-heterozygosity status, per-sample genomic scar scores, ie, the HRD score and mutational signature 3 ratio, DNA methylation profiles, gene expression profiles, somatic TP53 mutations, sex, and clinical information including chemotherapeutic regimens.ResultsBiallelic alterations in HRR genes other than BRCA1/2 were also associated with elevated genomic scar scores. The association between HRR-related gene alterations and genomic scar scores differed significantly by sex and the presence of somatic TP53 mutations. HRD cases determined by a combination of these indices also showed HRD features in gene expression analysis and were associated with better survival when treated with DNA-damaging agents.ConclusionThis study provides evidence for the usefulness of HRD analysis in all cancer types, improves chemotherapy decision making and its efficacy in clinical settings, and represents a substantial advancement in precision oncology.
Project description:Homologous recombination DNA repair deficiency (HRD) is associated with sensitivity to platinum and poly (ADP-ribose) polymerase inhibitors in certain cancer types, including breast, ovarian, pancreatic, and prostate. In these cancers, BRCA1/2 alterations and genomic scar signatures are useful indicators for assessing HRD. However, alterations in other homologous recombination repair (HRR)-related genes and their clinical significance in other cancer types have not been adequately and systematically investigated.MethodsWe obtained data sets of all solid tumors in The Cancer Genome Atlas and Cancer Cell Line Encyclopedia, and comprehensively analyzed HRR pathway gene alterations, their loss-of-heterozygosity status, and per-sample genomic scar scores, that is, the HRD score and mutational signature 3 ratio, DNA methylation profiles, gene expression profiles, somatic TP53 mutations, sex, and clinical or in vitro response to chemical exposure.ResultsBiallelic alterations in HRR genes other than BRCA1/2 were also associated with elevated genomic scar scores. The association between HRR-related gene alterations and genomic scar scores differed significantly by sex and the presence of somatic TP53 mutations. HRD tumors determined by a combination of indices also showed HRD features in gene expression analysis and exhibited significantly higher sensitivity to DNA-damaging agents than non-HRD cases in both clinical samples and cell lines.ConclusionThis study provides evidence for the usefulness of HRD analysis in all cancer types, improves chemotherapy decision making and its efficacy in clinical settings, and represents a substantial advancement in precision oncology.A comprehensive pan-cancer analysis on the clinical significance of homologous recombination deficiency.
Project description:Although several proteogenomic analyses of high-grade serous ovarian cancer (HGSOC) have been conducted, these analyses are often dominated by tissues with high levels of tumor cell nuclei (purity), despite low purity being associated with worse outcome. We performed deep proteogenomic profiling of bulk tumor (BT) and laser microdissection (LMD) enriched tumor (ET) and stromal (ST) cell populations from 70 HGSOC patient tumors spanning a broad spectrum of purity. We identified a cluster of patients with longer progression free survival associated with increased immune signatures and validated proteins correlating with tumor infiltrating lymphocytes (TILs) in 65 tumors collected from an independent cohort of 12 HGSOC patients, as well as with overall survival in an additional cohort of 126 HGSOC patients. We identified that homologous recombination deficient (HRD) tumors express transcriptomic and proteomic pathways associated with metabolism and oxidative phosphorylation that we validated in independent patient cohorts, including 69 HRD-positive HGSOC tumors. In summary, our proteogenomic analysis provides important new clinically relevant insights into HGSOC tumor cell populations, and have uncovered prognostic proteogenomic alterations correlating with TILs, low tumor purity, as well as expression alterations associated with HRD status and immune infiltration.
Project description:Profiling of genome-wide DNA methylation and copy number in TNBCs classified as HRD by the multiplex ligation-dependent probe amplification assay
Project description:SNP arrays and appropriate bioinformatic algorithms were used to calculate GIS in 29 Ovarian cancer patients with known GIS status using a validated NGS assay.