Project description:Oil palm leaves were analysed via proteomics approach to identify the differentially-expressed proteins under Red Palm Weevil infestation on the first, third and sixth week post-infestation. The comparison was made among three groups; the control (C), physical wounding by drilling (wounded,W) and the red palm weevil larva infestation (Infested, I)
Project description:To explore the bacterial community profile of the gut of the African palm weevil and to identify the abundance and diversity of lignin degradation-associated bacteria in each gut segment.
Project description:Oil palm (Elaeis guineensis) is a highly productive oil crop and the most consumed vegetable oil globally due to its unique oil characteristics. Palm oil production is affected by abiotic stresses, leading to food security issues and huge economic losses. To understand the oil palm responses to different abiotic stresses at the transcriptional level, we performed RNA-Seq analyses of oil palm leaves treated with drought, high salinity, heat, cold and flood stresses compared with controls. A total of 18 libraries (three biological replicates per treatment) were generated with approximately 843 million of total clean reads after data filtering. Clean reads were mapped to the oil palm reference genome at a total mapping rate of more than 70%. The quantification of expression analysis enabled the identification of potential abiotic stress-responsive genes, co-expressed under multiple abiotic stresses and unigenes that were induced by a specific abiotic stress. The availability of these RNA-Seq datasets will provide a better understanding of the abiotic stress response mechanisms to develop climate-resilient oil palm planting materials.
Project description:Oil palm breeding and seed development have been hindered due to the male parent's incapacity to produce male inflorescence as a source of pollen under normal conditions. On the other hand, a young oil palm plantation has a low pollination rate due to a lack of male flowers. These are the common problem of sex ratio in the oil palm industry. Nevertheless, the regulation of sex ratio in oil palm plants is a complex mechanism and remains an open question until now. Researchers have previously used complete defoliation to induce male inflorescences, but the biological and molecular mechanisms underlying this morphological change have yet to be discovered. Here, we present an RNA-seq dataset from three early stages of an oil palm inflorescence under normal conditions and complete defoliation stress. This transcriptomic dataset is a valuable resource to improve our understanding of sex determination mechanisms in oil palm inflorescence.
Project description:H3K4me3 profiling of OSCC secondary (2ary) recipient primary tumors (PTs) following in vivo exposure to control (CTRL) or palm oil-enriched (PALM) diet in primary recipient mice
Project description:Oil palm (Elaeis guineensis Jacq.) is one of the most important oil-producing crops in the world. However, the demand for oil from this crop will increase in the future. A comparative gene expression profile of the oil palm leaves was needed in order to understand the key factors that influence the oil production. Here, we reported an RNA-seq dataset from three different oil yields and three different genetic populations of oil palm. All raw sequencing reads were obtained from an Illumina NextSeq 500 platform. We also provide a list of the genes and their expression levels resulting from the RNA-sequencing. This transcriptomic dataset will provide a valuable resource for increasing oil yield.
Project description:To investigate the role of lncRNAs on lipid metabolism, we did RNAseq to find the difference among large yellow croaker fed with fish oil (FO), soybean oil (SO), olive oil (OO), and palm oil (PO) diets