Project description:The widespread presence of antibiotic-resistant bacteria in the environment has been recognized as an important emerging environmental contaminant. Hospital wards, as a special public indoor environment, are of great concern for the risks associated with this emerging environmental contaminant. Pseudomonas aeruginosa, a common nosocomial bacterium, is a contamination risk in the hospital environment due to its drug resistance and transmission of virulence factors. Notably, the antimicrobial peptide-sensing two-component system (TCS) ParRS and CprRS have been implicated in dynorphin-induced signaling, but the underlying Manuscript2 mechanism has remained elusive. In this study, we performed proteomic analysis to systematically investigate the contributions of ParRS and CprRS to P. aeruginosa pathogenesis and dynorphin-induced resistance to polymyxins. Additionally, we characterized the significance of the extracellular sensor domains of ParS and CprS in dynorphin perception. Furthermore, through structural biology, we identified additional TCS sensors with similar extracellular domain conformations, which also directly interacted with dynorphin in vitro. This suggests convergent evolution in different bacterial TCSs for host-derived synthetic peptide signal transmitting. Our findings establish a link between CAMPs resistance associated TCSs and virulence regulation of common nosocomial bacteria. This further illustrates the danger of this emerging contaminant for the environment and humans.
Project description:Shotgun metagenomic sequencing of nasopharyngeal (NP) samples, from children enrolled in a PCV13-vaccinated South African birth cohort was used to explore strain-level pneumococcal colonization patterns and transmission dynamics, and associated antimicrobial-resistance determinants. NP swabs were collected at two-week intervals from birth through the first year of life from 137 infants. Pneumococcal isolates were serotyped and tested for phenotypic antimicrobial resistance. 196 NP samples from a subset of 23 infants were then selected based on changes in serotype or antimicrobial resistance. DNA was extracted directly from the enriched NP samples and shotgun metagenomic sequencing performed. Reads were assembled and aligned against reference pneumococcal genomes. in silico pneumococcal capsular, multilocus sequence typing, and resistome analyses were performed.
Project description:Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) strains and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence data. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB (HR-MTB), 7 were resistant only to one antibiotic (3 were resistant only to ethambutol and 3 isolate to streptomycin while one isolate showed resistance to fluoroquinolones), 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB (pre-XDR). This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of TB infection.
Project description:Spatial and temporal dynamics of antimicrobial resistance transmission from the outdoor environment to humans in urban and rural Bangladesh
Project description:The pre and postnatal environment can affect both an individual’s risk of adult onset metabolic disease and that of subsequent generations. Although animal models and epidemiological data implicate epigenetic inheritance, little is known of the mechanisms involved. In a robust intergenerational model of developmental programming we demonstrate that the nutritional environment experienced in utero by F1 generation embryos alters the DNA methylome of the F1 adult male germ line in a locus-specific manner, without affecting overall methylation levels. Differentially methylated regions are mostly hypomethylated and are enriched in nucleosome retaining regions in adult sperm. A substantial fraction is resistant to early embryo methylation reprogramming, and thus have the potential to alter F2 generation development. Altered expression of transcripts neighbouring differentially methylated regions are evident in tissues of F2 offspring despite lack of persistence of differential methylation. Transmitted methylation variation in the germline at key regulatory loci may therefore contribute to the development of metabolic disease in the subsequent generation. 2 biological replicates of pooled sperm samples for each control (C) or undernutrition (UN) model