Project description:Functionality of the accessory gene regulator (agr) quorum sensing system is an important switch promoting either acute or chronic infections, mediated by the notorious opportunistic human and veterinary pathogen Staphylococcus aureus. Spontaneous alterations of the agr system are known to frequently occur in human healthcare-associated S. aureus lineages. However, data on agr integrity and function are sparse regarding other major lineages. Here we report on the agr system functionality and activity level in mecC-carrying methicillin resistant S. aureus (MRSA) of various animal origins (n=33) in Europe together with closely related isolates of human patients (n=12). Whole genome analysis assigned all isolates to four clonal complexes (CC) with distinct agr types (CC599 agr I, CC49 agr II, CC130 agr III and CC1943 agr IV). Different levels of agr functionality were detected by use of different phenotype assays and proteomics for isolates of each CC, including completely non-functional variants. Genomic comparison of the agr I-IV encoding regions revealed that variants of AgrA and AgrC were associated with these phenotype changes, especially among the isolates of pet- and wild animal origin. Since a role in adaptation is most likely when genomic changes occur independently in divergent lineages, agr variation might foster viability and niche adjustment capacities of rare MRSA lineages.
2021-09-09 | PXD016486 | Pride
Project description:Origin and evolution of mecC-MRSA
Project description:Previous studies have documented the diversity of genetic background of methicillin-resistant S. aureus (MRSA) strains associated with healthcare (HA-MRSA), community (CA-MRSA) and livestock (LA-MRSA). The accessory and core-variable genome content of those strains remain largely unknown. To compare the composition of accessory and core-variable genome of Belgian MRSA strains according to host, population setting and genetic background, representative strains of HA- (n=21), CA- (n = 13) and ST398 LA-MRSA (n = 18) were characterized by a DNA-microarray (StaphVar Array) composed of oligonucleotide probes targeting ~400 resistance, adhesion and virulence associated genes.ST398 strains displayed very homogenous hybridization profiles (>94% gene content homology) irrespective of their host origin. This “ST398-specific” genomic profile was not distantly demarked from those of certain human-associated lineages but lacked several virulence- and colonization-associated genes harbored by strains of human origin, such as genes encoding proteases, haemolysins or adhesins. No enterotoxin gene was found among ST398 strains. In conclusion, our findings are consistent with a non-human origin of this ST398 lineage but suggest that it might have the potential to adapt further to the human host.
Project description:Sixteen severly RAO (Recurrent Airway Obstruction) affected horses were studied. All RAO affected male horses were hybridized with GSM1332974 (Thoroughbred male 1, male reference), and the female horses were with GSM1332975 (Thoroughbred female 2, female reference). Finally results are compared with GSE55266 and two other control horses (SPA-H1-3 and SPA-H1-5) and relatively novel RAO CNVs were reported.
Project description:Methicillin resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen chief amongst bloodstream infecting pathogens. MRSA produces an array of human specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes to infection with MRSA using RNA-Seq. We found that the overall transcriptional response to MRSA was weak both in the number of genes and the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we found that infection with live MRSA resulted in the down-regulation of genes related to innate immune response, and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in heat-killed MRSA or blood infected with live Staphylococcus epidermidis. Importantly, the muted signature was also present in patients with S. aureus bacteremia. We next identified the master regulator SaeRS and the SaeRS-regulated pore-forming toxins as key mediators of transcriptional suppression. The impaired chemokine and cytokine responses were reflected by circulating protein levels in the plasma. MRSA elicits a soluble milieu that is restrictive in the recruitment of human neutrophils compared to strains lacking saeRS. Thus, MRSA blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of S. aureus during invasive infection.