Project description:High-throughput sequencing of endogenous small RNAs from the moss Physcomitrella patens. This dataset encompasses microRNAs and other small RNAs of ~20-24 nucleotides expressed in the moss P. patens. SAMPLES UPDATED JULY 9, 2007 TO INCLUDE DATA ON SEQUENCED SMALL RNAS THAT DO NOT MATCH THE P. PATENS GENOME Keywords: High throughput small RNA sequencing
Project description:4plex_physco_2014-05 - ppmax2 response to gr24 - How does the Ppmax2 moss mutant respond to Strigolactone (GR24)? - Two moss genotypes are used: WT and the Ppmax2 mutant. Moss tissues are fragmented, then plated on medium (Petri dish with cellophane disks) and cultivated for 3 weeks. Moss tissues are then transfered for 6 hours on acetone-containing medium (control treatment, for WT and Ppmax2) or GR24 (1 microM, in acetone)-containing medium (for Ppmax2). After 6 hours, the moss tissues are collected, quickly forzen in liquid nitrogen. RNA are isolated using the Quiagen RNeasy Plant mini kit (including a RNase-free DNase treatment on column). Two similar experiments (T1 and T2) have been led.
Project description:The little skate, a cartilaginous fish evolutionarily distal from tetrapods, displays walking-like behavior and has conserved genetic programs and neuronal substrates for land-walking. Studies on little skate have been limited due to lack of high-quality genome assembly. Here, we generated an improved genome assembly of little skate reflecting precise gene annotation and structures and performed integrated analysis of gene expression and chromatin accessibility to investigate molecular mechanisms of fin motor neuron development. Through interspecies comparison of RNA expression, common and species-specific genes expressed in fin/limb/wing level motor neurons were identified. Moreover, by performing chromatin accessibility analysis with a pure fin motor neuron population the potential regulators controlling the gene expression in fin motor neurons were identified. Interspecies comparison of genomic data, gene expression, and chromatin accessibility assay suggest that the little skate has highly conserved gene regulatory mechanisms controlling tetrapod locomotion, which was not previously expected.
Project description:The little skate, a cartilaginous fish evolutionarily distal from tetrapods, displays walking-like behavior and has conserved genetic programs and neuronal substrates for land-walking. Studies on little skate have been limited due to lack of high-quality genome assembly. Here, we generated an improved genome assembly of little skate reflecting precise gene annotation and structures and performed integrated analysis of gene expression and chromatin accessibility to investigate molecular mechanisms of fin motor neuron development. Through interspecies comparison of RNA expression, common and species-specific genes expressed in fin/limb/wing level motor neurons were identified. Moreover, by performing chromatin accessibility analysis with a pure fin motor neuron population the potential regulators controlling the gene expression in fin motor neurons were identified. Interspecies comparison of genomic data, gene expression, and chromatin accessibility assay suggest that the little skate has highly conserved gene regulatory mechanisms controlling tetrapod locomotion, which was not previously expected.