Project description:This analysis compare gene expression between 4 day old sugar fed female and male Aedes aegypti mosquitoes. Keywords: Aedes aegypti sex specific expression
Project description:This analysis defines the adult female and developmental specific transcriptomes of Aedes aegypti. Keywords: Aedews aegypti, development, gene expression
Project description:Female Aedes aegypti mosquitoes impose a severe global public health burden as primary vectors of multiple viral and parasitic pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges, like intense droughts and intermittent precipitation, which create unpredictable and suboptimal conditions for the egg-laying step of their reproductive cycle. Aedes aegypti mosquitoes nonetheless show remarkable reproductive resilience, but how they achieve this is unknown. Here we show that under drought-like conditions simulated in the laboratory, mated, blood-fed Aedes aegypti females carrying mature eggs retain them in their ovaries for extended periods, while maintaining the viability of these eggs until they can be deposited in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes – here named tweedledee and tweedledum – that show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. Using loss-of-function mutagenesis to disrupt both genes, we show that, tweedledee and tweedledum, which encode secreted proteins, are specifically required for extended retention of viable eggs, such as during intermittent precipitation or drought. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with “insurance” to, when contextually appropriate, flexibly extend their reproductive sequence without losing reproductive capacity, thus allowing this species to exploit diverse and unpredictable habitats.
Project description:Investigation of whole genome gene expression level changes of testes in the meiotic drive system in aedes aegypti during spermatogenesis compared to non drive strain. The meiotic drive system in Aedes aegypti causes the female determining chromosome to fragment during spermatogenesis.
Project description:Investigation of whole genome gene expression level changes of testes in the meiotic drive system in aedes aegypti during spermatogenesis compared to non drive strain. The meiotic drive system in Aedes aegypti causes the female determining chromosome to fragment during spermatogenesis. A six chip study using total RNA from three separately extracted non driving strain testes of Aedes aegypti and three separately extracted meiotic drive strain testes of Aedes aegypti.
Project description:Female Aedes aegypti mosquitoes impose a severe global public health burden as primary vectors of multiple viral and parasitic pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges, like intense droughts and intermittent precipitation, which create unpredictable and suboptimal conditions for the egg-laying step of their reproductive cycle. Aedes aegypti mosquitoes nonetheless show remarkable reproductive resilience, but how they achieve this is unknown. Here we show that under drought-like conditions simulated in the laboratory, mated, blood-fed Aedes aegypti females carrying mature eggs retain them in their ovaries for extended periods, while maintaining the viability of these eggs until they can be deposited in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes – here named tweedledee and tweedledum – that show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. Using loss-of-function mutagenesis to disrupt both genes, we show that, tweedledee and tweedledum, which encode secreted proteins, are specifically required for extended retention of viable eggs, such as during intermittent precipitation or drought. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with “insurance” to, when contextually appropriate, flexibly extend their reproductive sequence without losing reproductive capacity, thus allowing this species to exploit diverse and unpredictable/chaotic/changing habitats.
Project description:Bacillus thuringiensis israelensis (Bti) toxins are increasingly used for mosquito control, but little is known about the precise mode of action of each of these toxins, and how they interact to kill mosquito larvae. By using RNA sequencing, we investigated change in gene transcription level and polymorphismvariations associatedwith resistance to each Bti Cry toxin and to the full Bti toxin mixture in the dengue vector Aedes aegypti. The upregulation of genes related to chitin metabolismin all selected strain suggests a generalist, non-toxin-specific response to Bti selection in Aedes aegypti. Changes in the transcription level and/or protein sequences of several putative Cry toxin receptors (APNs, ALPs, α-amylases, glucoside hydrolases, ABC transporters) were specific to each Cry toxin. Selective sweeps associated with Cry4Aa resistancewere detected in 2 ALP and 1 APNgenes. The lack of selection of toxin-specific receptors in the Bti-selected strain supports the hypothesis that Cyt toxin acts as a receptor for Cry toxins in mosquitoes.