Project description:The strictly monophagous olive fruit fly, Bactrocera oleae, represents the major pest of olive orchards worldwide. It has the unique ability to hydrolyze olive proteins as well as to overcome olive defenses, especially the high levels of phenolic compounds present in the green olive mesocarp. In this study, we aimed to identify specific genes potentially implicated in overcoming green olive defense and the utilization of the flesh, by examining larval responses to green olives on the transcript level. Focusing on the up-regulated gene set, we identified two putative serine proteases and one putative UDP-glycosyltransferase possibly associated with these traits. Serine proteases could be involved in the digestion of dietary proteins but also could represent a mechanism to overcome the effect of trypsin inhibitors induced by the olive fruit upon attack. UDP-glycosyltransferase may be implicated in the sequestration and/ or direct detoxification of phenolic compounds highly present in green olives.
Project description:Proteins and peptides are minor components of vegetal oils. The presence of these compounds in virgin olive oil was first reported in 2001, but the nature of the olive oil proteome is still a puzzling question for food science researchers. In this project, we have compiled for a first time a comprehensive proteomic dataset of olive fruit and fungal proteins that are present at low but measurable concentrations in a vegetable oil from a crop of great agronomical relevance as olive (Olea europaea L.). Accurate mass nLC-MS data were collected in high definition direct data analysis (HD-DDA) mode using the ion mobility separation step. Protein identification was performed using the Mascot Server v2.2.07 software (Matrix Science) against an ad hoc database made of olive protein entries. Starting from this proteomic record, the impact of these proteins on olive oil stability and quality could be tested. Moreover, the effect of olive oil proteins on human health and their potential use as functional food components could be also evaluated. In addition, this dataset provides a resource for use in further functional comparisons across other vegetable oils, and also expands the proteomic resources to non-model species, thus also allowing further comparative inter-species studies.
Project description:The vertebrate heart is the first organ to form in the embryo and is composed of mesodermal progenitors that arise in an area termed the cardiac crescent. These give rise not only to muscle cells but also to a variety of other cell types, all of which work together to allow the heart to beat rhythmically. Current understanding of when and how these different cell types arise during early cardiogenesis is limited. Therefore, we microdissected the cardiac crescent region of mouse embryos at different stages of development -from when the structure is first present until the linear heart tube (LHT) stage- and performed single-cell RNA-sequencing. The present submission contains pilot data from the LHT.
Project description:Olive oil is protective against risk factors for cardiovascular and cancer diseases. A nutrigenomic approach was performed to assess whether olive oil, the main fat of the Mediterranean diet modifies the gene expression in human peripheral blood mononuclear cells. Six healthy male volunteers ingested, at fasting state, 50 ml of olive oil, and continued with the same olive oil as a source of raw fat (25ml/day) during 3 weeks. Prior to intervention a 1-week washout period with sunflower oil as the only source of fat was followed. During the 3 days before, and on the intervention day, a very low phenolic compound diet was followed. At baseline (0h), at post ingestion (6h), and at fasting state after 3 weeks of sustained consumption of olive oil total RNA was isolated from PBMC. Gene expression was evaluated by microarray and verified by qRT-PCR. Keywords: Olive oil, gene expression, single dose, sustained consumption
Project description:We aimed to identify miRNA regulated by alternate bearing in O. europaea. For this purpose, six olive (Olea europaea L. )(Ayvalık variety) small RNA libraries were constructed from fruits (ripe and unripe) and leaves ("on-year" and "off-year" mature -leaven in November and juvenile - leaven in July plants) and sequenced by high-throughput Illumina sequencing. Bioinformatics analyses of 93,526,915 reads identified 135 conserved miRNA, belonging to 22 miRNA families in olive tree. In addition, 38 novel miRNA were discovered in the datasets. Expression of olive tree miRNA varied greatly among the six libraries, indicating contribution of diverse miRNA in balancing between reproductive and vegetative phases. The differential expression of miRNA was evaluated on the basis of the developmental phase of the samples.