Project description:Immunotherapy has improved the prognosis of patients with advanced non-small cell lung
cancer (NSCLC), but only a small subset of patients achieved clinical benefit. The purpose of our study was to integrate multidimensional data using a machine learning method to predict the therapeutic efficacy of immune checkpoint inhibitors (ICIs) monotherapy in patients with advanced NSCLC.The authors retrospectively enrolled 112 patients with stage IIIB-IV NSCLC receiving ICIs monotherapy. The random forest (RF) algorithm was used to establish efficacy prediction models based on five different input datasets, including precontrast computed tomography (CT) radiomic data, postcontrast CT radiomic data, combination of the two CT radiomic data, clinical data, and a combination of radiomic and clinical data. The 5-fold cross-validation was used to train and test the random forest classifier. The performance of the models was assessed according to the area under the curve (AUC) in the receiver operating characteristic (ROC) curve. Among these models(RF MLP LR XGBoost), our reproduced onnx models have better performance, especially for random forest. The response variable with a value (1/0) indicates the (efficacy/inefficacy) of PD-1/PD-L1 monotherapy in patients with advanced NSCLC
Project description:We examined published microarray data from 104 acute lymphoblastic leukaemia patient specimens, that represent six different subgroups defined by cytogenetic features and immunophenotypes. Using the decision-tree based supervised learning algorithm Random Forest (RF), we determined a small set of genes for optimal subgroup distinction and subsequently validated their predictive power in an independent cohort of 68 specimens that were assessed using Affymetrix HG-U133A arrays.