Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
Project description:Population dynamics of methanogenic genera was investigated in pilot anaerobic digesters. Cattle manure and two-phase olive mill wastes were codigested at a 3:1 ratio in two reactors operated at 37 ï¾°C and 55 ï¾°C. Other two reactors were run with either residue at 37 ï¾°C. Sludge DNA extracted from samples taken from all four reactors on days 4, 14 and 28 of digestion was used for hybridisation with the AnaeroChip, an oligonucleotide microarray targeting those groups of methanogenic archaea that are commonly found under mesophilic and thermophilic conditions (Franke-Whittle et al. 2009, in press, doi:10.1016/j.mimet.2009.09.017).
Project description:Autotrophic conversion of CO2 to value-added biochemicals has received considerable attention for the sustainable route to replace the fossil fuels. Particularly, anaerobic acetogenic bacteria are naturally capable of reducing CO2 or CO to various metabolites. To fully utilize their biosynthetic potential, systemic understanding of the metabolic network with the transcriptional and translational regulation of the corresponding genes is highly demanded. Here, we complete a genome sequence of Eubacterium limosum ATCC8466 in a circular form of 4.4 Mb, followed by integrating genome-scale measurements of its transcriptome and translatome. Interestingly, the transcriptionally abundant genes encoding the Wood-Ljungdahl pathway were regulated at translational level with decreased translation efficiency (TE). To understand the regulation, the primary transcriptome was augmented, which determined 1,458 transcription start sites (TSS) and 1,253 5’-untranslated regions (5′UTR). The data supports that under the autotrophic condition the TE of genes for the Wood-Ljungdahl pathway and the energy conservation system were regulated by 5′UTR secondary structure. In addition, it was illustrated that the strain reallocates protein synthesis and energy economically, focusing more on translation of energy conservation system rather than on carbon metabolism under autotrophic growth. Thus, our results provide potential route for strain engineering to enhance syngas fermenting capacity.
2018-07-16 | GSE97613 | GEO
Project description:Pig manure and cow manure composting
| PRJNA1017787 | ENA
Project description:Co-digestion of Agricultural Residues with Cow Manure for Methane Gas Production