Project description:Aposematic color pattern mimicry in Heliconius butterflies provides a well-known example of adaptation via selection on a few genes of large effect. To understand how selection at individual genes can drive the evolution of complex traits, we functionally characterized five novel enhancers of the color pattern gene, optix. In Heliconius erato we found that wing pattern enhancers are largely ancestral, pleiotropic, functionally interdependent, and introgressed between populations. Remarkably, many of these enhancers are also associated with regional pattern variation in the distantly related co-mimics Heliconius melpomene and Heliconius timareta. Our findings provide a case study of how parallel co-evolution of ancient, multifunctional regulatory elements can facilitate the rapid diversification of complex phenotypes, and provide a counterpoint to many widespread assumptions of cis-regulatory evolution.
Project description:Aposematic color pattern mimicry in Heliconius butterflies provides a well-known example of adaptation via selection on a few genes of large effect. To understand how selection at individual genes can drive the evolution of complex traits, we functionally characterized five novel enhancers of the color pattern gene, optix. In Heliconius erato we found that wing pattern enhancers are largely ancestral, pleiotropic, functionally interdependent, and introgressed between populations. Remarkably, many of these enhancers are also associated with regional pattern variation in the distantly related co-mimics Heliconius melpomene and Heliconius timareta. Our findings provide a case study of how parallel co-evolution of ancient, multifunctional regulatory elements can facilitate the rapid diversification of complex phenotypes, and provide a counterpoint to many widespread assumptions of cis-regulatory evolution.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:Aposematic color pattern mimicry in Heliconius butterflies provides a well-known example of adaptation via selection on a few genes of large effect. To understand how selection at individual genes can drive the evolution of complex traits, we functionally characterized five novel enhancers of the color pattern gene, optix. In Heliconius erato we found that wing pattern enhancers are largely ancestral, pleiotropic, functionally interdependent, and introgressed between populations. Remarkably, many of these enhancers are also associated with regional pattern variation in the distantly related co-mimics Heliconius melpomene and Heliconius timareta. Our findings provide a case study of how parallel co-evolution of ancient, multifunctional regulatory elements can facilitate the rapid diversification of complex phenotypes, and provide a counterpoint to many widespread assumptions of cis-regulatory evolution.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3)
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Functional gene abundance was determined using GeoChip.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Three groups of samples, A, B and C. Every group has 3 replicates.
Project description:We investigated gene expression levels in Heliconius erato butterflies with divergent wing patterns across a 656KB genomic interval linked to the red color pattern wing polymorphism. This included comparison of expression between two H. erato color pattern populations (H. e. petiverana and a H.e. etylus x H. himera hybrid) across three sections of the forewing that differed in pigmentation (the basal, mid, and distal wing sections) and five different stages of pupal development (Day 1, 3, 5 pupae and ommochrome and melanin pigmentation stages). These results allowed us to determine whether certain genes in this interval were differentially expressed between the wing pattern elements, and, therefore, potentially responsible for adaptive color pattern variation in these butterflies.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.