Project description:In this study we used Illumina RNA-seq to identify genes expressed by A. veronii in mid-log phase growth in a rich medium and within the digestive tract of the medicinal leech. Our results shed light on the physiology of A. veronii during colonization of the leech gut.
Project description:In this study we used Illumina RNA-seq to identify genes expressed by A. veronii in mid-log phase growth in a rich medium and within the digestive tract of the medicinal leech. Our results shed light on the physiology of A. veronii during colonization of the leech gut. A comparison of Illumina RNA-seq of A. veronii in vivo versus in vitro.
Project description:Earthworms show a wide spectrum of regenerative potential with certain species like Eisenia fetida, a terrestrial redworm, capable of regenerating more than two-thirds of their body while other closely related species, such as Paranais litoralis seem to have lost this ability. Earthworms belong to the phylum annelida, in which the genomes of the marine oligochaete Capitella telata, and the freshwater leech Helobdella robusta have been sequenced and studied. Herein, we report the de novo assembled transcriptome of Eisenia fetida (Indian isolate), along with an analysis of the transcriptomic changes during regeneration. We also used de novo assembled RNAseq data to identify genes that are differentially expressed during regeneration, both in the newly regenerating cells and in the adjacent tissue.
Project description:Corals in nearshore marine environments are increasingly exposed to reduced water quality, which is the major local threat to coral reefs in Hawaii. Corals surviving in such conditions may have adapted to withstand sedimentation, pollutants, and other environmental stressors. Lobe coral (Porites lobata) populations from Maunalua Bay, Hawaii showed clear genetic differentiation along with distinct cellular protein expressions between the 'polluted, high-stress' nearshore site and the 'low-stress' offshore site. To understand the driving force of the observed genetic partitioning, reciprocal transplant and common-garden experiments were conducted using the nearshore and offshore colonies of P. lobata from Maunalua Bay to assess phenotypic differences between the two coral populations. Stress-related physiological and molecular responses were compared between the two populations. Proteomic responses highlighted the inherent differences in the cellular metabolic state and activities between the two populations under the same environmental conditions; nearshore corals did not significantly alter their proteome between the sites, while offshore corals responded to the nearshore transplantation with increased abundances of proteins associated with detoxification, antioxidant, and various metabolic processes. The response differences across multiple phenotypes suggest that the observed genetic partitioning was likely due to local adaptation.