Project description:Free fatty acid β oxidation and akt signal pathway processes were up-regulated in liver of Balb/cBy mice after 12 week HFD-fed, which can conrtibute to up-regulate free fatty acid β oxidation and improved insulin signal transduction We used microarrays to detail the global genes expression underlying free fatty acid β oxidation, unfolded protein response and akt signal pathway, and then identified up-regulated and down-regulated genes during there processes.
Project description:Full title: Environmental transcriptome analysis of LfeRT32a in its natural microbial community comparing the biofilm and planktonic modes of life. Extreme acidic environments are characterized among other features by the high metal content and the lack of nutrients (oligotrophy). Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers). In the Tinto River (Spain), brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans are abundant. Both microorganisms play a critical role in bioleaching processes for industrial (biominery) and environmental applications (acid mine drainage, bioremediation). The aim of this study was to investigate the physiological differences between the free living (planktonic) and the sessile (biofilm associated) lifestyles of L. ferrooxidans as part of a natural extremely acidophilic community.
Project description:Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly being studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker, pmoA, were found to vary quantitatively with respect to methane oxidation rates in model aerobic methanotroph, Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per cell pmoA mRNA transcript levels strongly correlated with per cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). Additionally, genome-wide expression data (RNA-seq) were used to explore transcriptomic responses of steady state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response.