Project description:Schizophrenia is a severe psychiatric illness that affects ~1% of the population and has a strong genetic underpinning. Recently, genome wide analysis of copy number variation (CNV) has implicated rare and de novo events as important in schizophrenia. Here we report a genome-wide analysis of 245 schizophrenia cases and 490 controls, all of Ashkenazi Jewish descent. Since many studies have found an excess burden of large, rare deletions in cases, we limited our analysis to deletions over 500 kb in size. We observed seven large, rare deletions in cases with 57% of these being de novo. We focused on one 836 kb de novo deletion at chromosome 3q29 that falls within a 1.3–1.6 Mb deletion previously identified in children with intellectual disability (ID) and autism, as increasing evidence suggests an overlap of specific rare CNVs between autism and schizophrenia. By combining our data with prior CNV studies of schizophrenia and analysis of the data of the Genetic Association Information Network (GAIN), we identified six 3q29 deletions among 7,545 schizophrenic subjects and one among 39,748 controls, resulting in a statistically significant association with schizophrenia (p = 0.02) and an odds ratio estimate of 17 (95% CI: 1.36–1198.4). Moreover, this 3q29 deletion region contains two linkage peaks from prior schizophrenia family studies, and the minimal deletion interval implicates 20 annotated genes, including PAK2 and DLG1, both paralogous to X-linked ID genes and now strong candidates for schizophrenia susceptibility.
Project description:The Affymetrix Genome-Wide Human SNP 6.0 and CytoScan HD arrays are high-resolution SNP platforms for studying copy number variations in the human genome. It is widely being used in both clinical and research settings for identifying causative variants as well as interrogating the genome for benign variants. We employed this platform to investigate the burden of clinically relevant rare (<0.1% in population controls) CNVs in individuals with schizophrenia, stratified by IQ group. We genotyped 540 unrelated probands with schizophrenia and applied rigorous methods to detect genome-wide CNVs. All rare CNV >500 kb and all rare exonic CNV >100 kb were adjudicated for clinical relevance following the American College of Medical Genetics guidelines for CNV interpretation. Our results revealed that burden of pathogenic CNVs is significantly greater for individuals with schizophrenia and low IQ compared to those with normal to superior IQ
Project description:Genome-wide screening for DNA copy-number variations (CNVs) was conducted for ten pairs, a total of 20 cases, of affected siblings using oligonucleotide array-based CGH. We found negative symptoms were significantly more severe (p < 0.05) in the subgroup that harboring more genetic imbalance (n ≧ 13, n = number of CNV-disrupted genes) as compared with the subgroup with fewer CNVs (n ≦ 6), indicating the degree of genetic imbalance may influence the severity of schizophrenia negative symptoms. Four central nervous system (CNS) related genes including CCAAT/enhancer binding protein, delta (CEBPD, 8q11.21), retinoid X receptor, alpha (RXRA, 9q34.2), LIM homeobox protein 5 (LHX5, 12q24.13) and serine/threonine kinase 11 (STK11, 19p13.3) are recurrently (incidence ≧16.7%) disrupted by CNVs. Two genes, PVR (poliovirus receptor) and BU678720, are concordant deleted in one and two, respectively, pairs of co-affected siblings. However, we did not find significant association of this BU678720 and schizophrenia in a large case-control sample. We conclude that the high genetic loading of CNVs may as the underlying cause of schizophrenia negative symptoms, and the CNS-related genes revealed by this study warrants further investigation.
Project description:Schizophrenia is a severe psychiatric disease with complex etiology, affecting approximately one percent of the general population. Most genetic studies so far focused on disease association with common genetic variation such as single nucleotide polymorphisms, but recently it has become apparent that large-scale genomic copy number variants (CNVs) are involved in disease development as well. To assess the role of rare CNVs in schizophrenia, we screened 54 patients with deficit schizophrenia using Affymetrixâ GeneChip 250K SNP arrays. Keywords: genomic hybridisation We hybridized genomic DNA of 54 patients with deficit schizophrenia to Affymetrix' GeneChip 250K SNP (Nsp) arrays, and identified genome-wide CNV using the Copy Number Analyzer for Affymetrix GeneChip (CNAG v2.0) software, which uses a Hidden Markov Model (HMM) algorithm to calculate copy numbers.
Project description:Schizophrenia is a severe psychiatric illness that affects ~1% of the population and has a strong genetic underpinning. Recently, genome wide analysis of copy number variation (CNV) has implicated rare and de novo events as important in schizophrenia. Here we report a genome-wide analysis of 245 schizophrenia cases and 490 controls, all of Ashkenazi Jewish descent. Since many studies have found an excess burden of large, rare deletions in cases, we limited our analysis to deletions over 500 kb in size. We observed seven large, rare deletions in cases with 57% of these being de novo. We focused on one 836 kb de novo deletion at chromosome 3q29 that falls within a 1.3–1.6 Mb deletion previously identified in children with intellectual disability (ID) and autism, as increasing evidence suggests an overlap of specific rare CNVs between autism and schizophrenia. By combining our data with prior CNV studies of schizophrenia and analysis of the data of the Genetic Association Information Network (GAIN), we identified six 3q29 deletions among 7,545 schizophrenic subjects and one among 39,748 controls, resulting in a statistically significant association with schizophrenia (p = 0.02) and an odds ratio estimate of 17 (95% CI: 1.36–1198.4). Moreover, this 3q29 deletion region contains two linkage peaks from prior schizophrenia family studies, and the minimal deletion interval implicates 20 annotated genes, including PAK2 and DLG1, both paralogous to X-linked ID genes and now strong candidates for schizophrenia susceptibility. Copy Number alanysis was performed on 245 cases and 490 controls of Ashkenazi Jewish descent. Samples were analyzed for deletions greater than 500 kb, with 20 or more snps in the interval. Three algorithms were used for analysis, GADA, GLAD and BEAST. The reference was created by using all samples processed here as the reference.
Project description:To reveal the risk CNVs of SZ in Chinese population, we recrited and enrolled 100 Chinese family trios with a schizophrenia affected children and both of their father and mother. SZ was diagnosed according to DSM-IV criteria by two independent psychiatrists. There gDNA we screen the genome-wide CNV using Agilent SurePrint G3 Human CGH Microarray Kit (1x1M) and Agilent sex-matched human DNA was used as reference. The CNV were called by ADM-2 statistical algorithms with a threshold of 6.0. We compared the burden of large rare CNVs and found that SZ probands carried more duplications and less deletions. Furtherly, we performed familial inheritance analysis of transmission disequilibrium and de novo CNV detection, validated several associated CNV loci with SZ susceptibility and also identify eight novel loci conferring risk of SZ
Project description:We examined six pairs of monozygotic twins discordant (MZD) for schizophrenia and identified copy number variation (CNV) and single nucleotide polymorphism (SNP) differences between affected and unaffected co-twins using the Affymetrix Genome Wide SNP 6.0.
Project description:We examined six pairs of monozygotic twins discordant (MZD) for schizophrenia and identified copy number variation (CNV) and single nucleotide polymorphism (SNP) differences between affected and unaffected co-twins using the Affymetrix Genome Wide SNP 6.0. Affymetrix SNP arrays were performed according to the manufacurer's protocol on DNA extracted from whole blood CNV analysis was done using Affymetrix Genotyping Console 4.0 and Partek Genotyping Suite
Project description:Klinefelter syndrome (KS) is the most prevalent aneuploidy in males and is characterized by an extra copy of the X chromosome,while the non-mosaic form of KS with 47,XXY karyotype is the most frequent (80-90%), less common non-disjunction events during the early mitotic division of the zygote result in mosaic forms of KS (47,XXY/46,XY). Here, using a paradigmatic cohort of KS-inducible pluripotent stem cells (iPSCs) carrying 47,XXY karyotypes we present the first iPSC-based disease-modeling study performed on KS patients from Saudi Arabia. We profiled the transcriptome of these Saudi KS-iPSCs, virtually characterized by subduedcgenetic backgrounds. Moreover, we performed a comparative transcriptomic analysis to assess the aberrant gene expression profile due to X dosage imbalance in four Saudi and five European and North American 47,XXY patients-derived iPSCs from our previously published study on KS and high-grade sex chromosome aneuploidies (SCAs). We identified a transcriptomic signature including ten PAR1 genes and thirteen non-PAR escape genes consistently upregulated in KS compared to 46,XY controls in both groups, as well as 193 consistenty disregulated autosomal genes. Our results indicate that the global transcriptional impact of X chromosome overdosage in KS is largely attributable to X-linked genes escaping X inactivation, regardless of the geographical area of origin, ethnicity, and genetic background.