Project description:<p>Pigmented rice (<em>Oryza sativa L.</em>) is a rich source of nutrients, but pigmented lines typically have long life cycles and limited productivity. Here we generated genome assemblies of 5 pigmented rice varieties and evaluated the genetic variation among 51 pigmented rice varieties by resequencing an additional 46 varieties. Phylogenetic analyses divided the pigmented varieties into four varietal groups: Geng-japonica, Xian-indica, circum-Aus and circum-Basmati. Metabolomics and ionomics profiling revealed that black rice varieties are rich in aromatic secondary metabolites. We established a regeneration and transformation system and used CRISPR-Cas9 to knock out three flowering time repressors (Hd2, Hd4 and Hd5) in the black Indonesian rice Cempo Ireng, resulting in an early maturing variety with shorter stature. Our study thus provides a multi-omics resource for understanding and improving Asian pigmented rice.</p>
2023-03-27 | MTBLS3320 | MetaboLights
Project description:Resequencing data of 147 rice varieties
Project description:Information about protein expression in rice grain across both pigmented and non-pigmented rice varieties is still relatively scarce. The data provided here represent proteomic data obtained from selected 6 Malaysian local rice varieties with varying pigmentations (black, red and white). The selected pigmented rice varieties such as black (BALI and Pulut hitam 9) and red rice (MRQ100 and MRM16) have shown high antioxidant activities and non-pigmented rice (MRQ76 and MR297) contain amino acid and micronutrient contents. This project aimed to obtain global protein expression profile as well as differential protein expression between the selected pigmented and non-pigmented rice varieties particularly proteins with their functions responsible for nutritional (i.e. antioxidant, folate and low glycaemic index) and quality (i.e. aromatic) traits. Integration of this proteomics dataset with other available in-house omics data could facilitate the identification of significant functional markers related to nutritional and quality traits. Total proteins were prepared from dehusked matured seeds harvested from three different rice plants of each variety (3 protein samples per variety). The proteins were trypsin digested before subjected to SWATH-MS proteomics analysis. Proteins were identified by matching tandem mass (MS/MS) spectra from both 1D and 2D IDA to Oryza sativa japonica and indica rice databases available at UniProt by using ProteinPilot software (v4.2) (AB Sciex). Quantification of proteins was carried out by determining protein peak areas extracted from SWATH analysis data sets using PeakView (v2.1) (AB Sciex) software. Differentially expressed protein between varieties were identified using T-test analysis with a set threshold for fold change ± 1.5 and p‐value < 0.05.
Project description:Crown roots differentiate from stem base in rice. In this study, we followed gene expression in stem base of two Vietnamese indica rice varieties that belong to two haplotypes defining a QTL associated with crown root number. We used microarrays to look for the gene differentially expressed in stem base of two varieties.
Project description:Studies have shown that Rice Salt Sensitive 1 (RSS1) is involved in stress response in rice plants. Primers were developed for amplification via Polymerase Chain Reaction (PCR) of a region that contained a simple sequence repeat (SSR) in RSS1. PCR was performed on 6 different varieties of Oryza sativa. PCR product was sequenced on an ABI 3730 capillary sequence machine. Sequence data was aligned to observe differences in SSR length between each rice variety.
Project description:Abstract We have re-analysed publicly available mass spectrometry (MS) data sets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we have identified, 15522 phosphosites on Serine, Threonine and Tyrosine residues on rice proteins. The data has been loaded into UniProtKB, enabling researchers to visualise the sites alongside other stored data on rice proteins, including structural models from AlphaFold2, and into PeptideAtlas, enabling visualisation of the source evidence for each site, including scores and source mass spectra. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation caused by different kinase groups. We cross-referenced phosphosites against single amino acid variation (SAAV) data sourced from the rice 3000 genomes data, to identify SAAVs within or proximal to phosphosites that could cause loss of a particular site in a given rice variety. The data was further clustered to identify groups of sites with similar patterns across rice family groups, allowing us to identify sites highly conserved in Japonica, but mostly absent in, for example, Aus type rice varieties - known to have different responses to drought. These resources can assist rice researchers to discover alleles with significantly different functional effects across rice varieties.
Project description:Roots make the first contact with the soil environment and are the first responders of stress. These root behaviors are quantifiable and adaptive. The response of rice varieties in mechanical and salinity stress was measured in a novel experimental setup that mimics the soil environment. We analyzed the response of roots by means of SAC (Stress Adaptation Coefficient) in 28 rice varieties that include high-yield salt tolerant varieties as well as geographically isolated native rice varieties. cDNA microarray of IR64 root-tip shows about 6000 common transcripts to be differentially regulated among the two stresses and common pathways were identified. Overall, our study indicates that there is an important commonality in the molecular basis of salt and mechanical stress and presents an easy-to-perform early establishment stress screen for rice varieties.
Project description:Studies have shown that Respiratory Burst Oxidase Homolog B (RBOHB) are involved in stress response in rice plants. Primers were developed for amplification via Polymerase Chain Reaction (PCR) of a region that contained a simple sequence repeat (SSR) in RBOHB. PCR was performed on 6 different varieties of Oryza sativa. PCR product was sequenced on an ABI 3730 capillary sequence machine. Sequence data was aligned to observe differences in SSR length between each rice variety.