Project description:Programmed cell suicide of infected bacteria, known as abortive infection (Abi), serves as a central immune defense strategy to prevent the spread of bacteriophage viruses and other invasive genetic elements across a population. Many Abi systems utilize bespoke cyclic nucleotide immune messengers generated upon infection to rapidly mobilize cognate death effectors. Here, we identify a large family of bacteriophage nucleotidyltransferases (NTases) which synthesize competitor cyclic dinucleotide (CDN) ligands and inhibit NAD-depleting TIR effectors activated through a linked STING CDN sensor domain (TIR-STING). Through a functional screen of NTase-adjacent phage genes, we uncover candidate inhibitors of host TIR-STING suicide signaling. Among these, we demonstrate that a virus MazG-like nucleotide pyrophosphatase, Atd1, depletes the starvation alarmone (p)ppGpp, revealing a role for the alarmone-activated host toxin MazF as a key executioner of TIR-driven abortive infection. Phage NTases and counter-defenses like Atd1 preserve host viability to ensure virus propagation, and may be exploited as tools to modulate TIR and STING immune responses.
Project description:Antiviral STANDs (Avs) are bacterial anti-phage proteins that are considered as the evolutionary ancestors of immune pattern-recognition receptors of the NLR family. Following the recognition of a conserved phage protein, Avs proteins exhibit cellular toxicity and abort phage propagation by killing the infected cell. Type 2 Avs proteins (Avs2) were suggested to recognize the large terminase subunit of the phage by direct binding as a signature of phage infection based on co-expression assays. Here, we analyzed the binding partners of a type 2 Avs protein from Klebsiella pneumoniae (KpAvs2) expressed in Escherichia coli during SECphi18 phage infection and showed that rather than the large terminase subunit, KpAvs2 binds a small phage protein of unknown function during infection.
Project description:Bacteriophages (hereafter “phages”) are ubiquitous predators of bacteria in the natural world, but interest is growing in their development into antibacterial therapy as complement or replacement for antibiotics. However, bacteria have evolved a huge variety of anti-phage defense systems allowing them to resist phage lysis to a greater or lesser extent, and in pathogenic bacteria these inevitably impact phage therapy outcomes. In addition to dedicated phage defense systems, some aspects of the general stress response also impact phage susceptibility, but the details of this are not well known. In order to elucidate these factors in the opportunistic pathogen Pseudomonas aeruginosa, we used the laboratory-conditioned strain PAO1 as host for phage infection experiments as it is naturally poor in dedicated phage defense systems. Screening by transposon insertion sequencing indicated that the uncharacterized operon PA3040-PA3042 was potentially associated with resistance to lytic phages. However, we found that its primary role appeared to be in regulating biofilm formation. Its expression was highly growth-phase dependent and responsive to phage infection and cell envelope stress.
Project description:Bacteriophage infection of Lactococcus lactis strains used in the manufacture of fermented milk products is a major threat for the dairy industry. A greater understanding of the global molecular response of the bacterial host following phage infection has the potential to identify new targets for the design of phage control measures for biotechnological processes. In this study, we have used whole-genome oligonucleotide microarrays to gain insights into the genomic intelligence driving the instinctive response of L. lactis subsp. lactis IL1403 to the onset of a challenge with the lytic prolate-headed phage c2. Following phage adsorption, the bacterium differentially regulated the expression of 61 genes belonging to 14 functional categories, and mostly to cell envelope (12 genes), regulatory functions (11 genes), and carbohydrate metabolism (7 genes). The nature of the differentially regulated genes suggests the orchestration of a complex response involving induction of cell envelope stress proteins, D-alanylation of cell-wall lipoteichoic acids (LTAs), restoration of the proton motive force (PMF), and energy conservation. Increased D-alanylation of LTAs would act as an adsorption blocking mechanism, which we speculate may allow the survival of a small percent of the cell population when facing more realistic in vivo low titer-phage attacks. The modification of LTAs decoration in response to phage c2 adsorption also suggests these cell wall structures as possible primary receptors for this phage. Restoration of a physiological PMF is achieved by regulating the expression of genes affecting the two main components of the PMF, and serves to reverse a drastic depolarization of the host membrane caused by phage adsorption. Down-regulation of energy-consuming metabolic activities and a switch to anaerobic respiration helps the bacterium to save energy in order to sustain the PMF and the overall response to phage. We finally propose that the overall transcriptional response of L. lactis IL1403 to the phage stimuli is orchestrated by the concerted action of Phage Shock Proteins and of the bivalent transcriptional regulator SpxB following activation by the two-component system CesSR. To our knowledge, this represents the first detailed description in L. lactis, and probably in Gram-positive bacteria, of the molecular mechanisms involved in the host response to the membrane perturbation mediated by phage adsorption.
Project description:Explore the genome-scale phage–host interactions across different developmental infection stages Samples were taken from the PA3 Lysates infected with phage Pap3 at six internal time (0,5,10,20,30,80min). Three independent experiments were performed at each timme except for 80min without biological replicate.
Project description:Bacteriophage infection of Lactococcus lactis strains used in the manufacture of fermented milk products is a major threat for the dairy industry. A greater understanding of the global molecular response of the bacterial host following phage infection has the potential to identify new targets for the design of phage control measures for biotechnological processes. In this study, we have used whole-genome oligonucleotide microarrays to gain insights into the genomic intelligence driving the instinctive response of L. lactis subsp. lactis IL1403 to the onset of a challenge with the lytic prolate-headed phage c2. Following phage adsorption, the bacterium differentially regulated the expression of 61 genes belonging to 14 functional categories, and mostly to cell envelope (12 genes), regulatory functions (11 genes), and carbohydrate metabolism (7 genes). The nature of the differentially regulated genes suggests the orchestration of a complex response involving induction of cell envelope stress proteins, D-alanylation of cell-wall lipoteichoic acids (LTAs), restoration of the proton motive force (PMF), and energy conservation. Increased D-alanylation of LTAs would act as an adsorption blocking mechanism, which we speculate may allow the survival of a small percent of the cell population when facing more realistic in vivo low titer-phage attacks. The modification of LTAs decoration in response to phage c2 adsorption also suggests these cell wall structures as possible primary receptors for this phage. Restoration of a physiological PMF is achieved by regulating the expression of genes affecting the two main components of the PMF, and serves to reverse a drastic depolarization of the host membrane caused by phage adsorption. Down-regulation of energy-consuming metabolic activities and a switch to anaerobic respiration helps the bacterium to save energy in order to sustain the PMF and the overall response to phage. We finally propose that the overall transcriptional response of L. lactis IL1403 to the phage stimuli is orchestrated by the concerted action of Phage Shock Proteins and of the bivalent transcriptional regulator SpxB following activation by the two-component system CesSR. To our knowledge, this represents the first detailed description in L. lactis, and probably in Gram-positive bacteria, of the molecular mechanisms involved in the host response to the membrane perturbation mediated by phage adsorption. Two-condition experiment: IL1403 vs. Bacteriophage c2-infected IL1403 cells. Biological replicates: 2 controls, 2 infected, independently grown and harvested. Two technical replicates per array.
Project description:We analyzed RNA-Seq data of two Staphylococcus aureus strains, Newman and SH1000, infected by Kayvirus phage K. Staphylococcus virus K is used in the phage therapy, its genome is 148 kb long consisting of dsDNA with long terminal repeats, and encodes 233 ORFs and 4 tRNAs. The sampling times 0, 2, 5, 10, 20, and 30 minutes after infection were chosen based on the growth characteristics of the phage K at the two S. aureus strains. From the RNA-Seq data we determined transcriptional profile of the phage K and its hosts, which allowed us to identify differentially expressed genes, ncRNAs, and promotor and terminator sites. Transcription of the phage K genes starts immediately after the infection of bacterial cells and we found a gradual take-over by phage K transcripts in the infected cells. The temporal transcriptional profile of phage K was similar in both strains and the relative expression of phage K genes shows three distinct transcript types – early, middle, and late based on the time they reach maximum expression. The bacterial response to phage K infection is similar to the general stress response. It includes the upregulation of nucleotide, amino acid and energy synthesis and transporter genes and the downregulation of transcription factors. The expression of particular virulence genes involved in adhesion and immune system evasion as well as prophage integrases were marginally affected. This work unveils the versatile nature of phage K infection leading to its broad host range
Project description:Given the gut microbiota involve aging processing, we performed comparative analysis of gut bacteriophage between older and young subjects using next-generation sequencing (NGS). In our previous study, we found that the Ruminococcaceae is higher in aged subjects comparing to young one. To identify the bacteriophage targeting to the Ruminococcaceae, we also access the composition of phage in the Ruminococcaceae (ATCC, TSD-27) after incubated with human stool samples. The Lactobacillus (ATCC, LGG) targeting phage was used as the control. The virome sequencing analysis using NGS indicated that Myoviridae are high enrich in young subjects and predominate in TSD-27 targeting phage.
Project description:During exocytosis, the evolutionarily conserved exocyst complex tethers Golgi-derived vesicles to the target plasma membrane, a critical function for secretory pathways. Here we show that exo70B1 loss-of-function mutants express activated defense responses upon infection and express enhanced resistance to fungal, oomycete and bacterial pathogens. In a screen for mutants that suppress exo70B1 resistance, we identified nine alleles of TIR-NBS2 (TN2), suggesting that loss-of-function of EXO70B1 leads to activation of this nucleotide binding domain and leucine-rich repeat-containing (NLR)-like disease resistance protein. This NLR-like protein is atypical because it lacks the LRR domain common in typical NLR receptors. In addition, we show that TN2 interacts with EXO70B1 in yeast and in planta. Our study thus provides a link between the exocyst complex and the function of a 'TIR-NBS only' immune receptor like protein. Our data are consistent with a speculative model wherein pathogen effectors could evolve to target EXO70B1 to manipulate plant secretion machinery. TN2 could monitor EXO70B1 integrity as part of an immune receptor complex.