Project description:We analyzed the transcriptome for drug metabolism genes of 35 human (17 healthy control (HC), and 18 nonalcoholic fatty liver disease (NAFLD)) liver tissues, obtained during laparoscopic cholecystectomy. The aim of our study is to identify the drug metabolism genes significantly regulated by NAFLD at the transcriptome level.
Project description:The aim of this sudy is to investigate the prevalence of colorectal cancer (CRC) in patients with nonalcoholic fatty liver disease (NAFLD) and evaluate whether NAFLD is a risk factor for CRC.
Project description:This SuperSeries is composed of the following subset Series: GSE30447: Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-regulated in Nonalcoholic Fatty Liver (HepG2 data) GSE30450: Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-regulated in Nonalcoholic Fatty Liver (hepatocytes data) Refer to individual Series
Project description:The current study was designed to determine if dietary fatty acid concentration and composition affects the development and progression of nonalcoholic fatty liver disease. Male SD rats were overfed diets low (5%) or high (70%) fat diets via total enteral nutrition where the fat source was olive oil (monounsaturated), or corn oil (polyunsaturated). Overfeeding 5% corn oil produced little steatosis relative to feeding 5% olive oil. This was associated with lower fatty acid synthesis and reduced SREBP-c signaling in the 5% corn oil group. Overfeeding 70% fat diets increased steatosis and lead to increased liver necrosis in the 70% corn oil but not olive oil group. Increased injury after feeding polyunsaturated fat diets was linked to peroxidizability of hepatic free fatty acids and triglycerides and appearance of peroxidaized lipid products HETES and HODES previously linked to clinical nonalcoholic steatohepatitis. Male SD rats were overfed diets low (5%) or high (70%) fat diets via total enteral nutrition where the fat source was olive oil (monounsaturated) or corn oil (polyunsaturated).
Project description:Purpose: We investigated the tetrachloroethylene associated changes in kidney transcriptomes among healthy mice, nonalcoholic fatty liver disease mice, and nonalcoholic steatohepatitis mice.
Project description:Nonalcoholic fatty liver disease (NAFLD) is strongly associated with insulin resistance (IR), but little is known about the key genetic driver that links these two disorders. We aimed to elucidate the mechanism by which Smoothened (Smo), a G-protein coupled receptor, contributes to pathogenesis of NAFLD and IR.