Project description:Current developments have led to a reconsidering of energy policy in many countries with the aim of increasing the share of renewable energies in the energy supply, where the anaerobic digestion (AD) of biomass to produce methane also plays an important role. To improve biomass digestion while ensuring overall process stability, microbiome-based management strategies became more important. By applying combined metagenome and metaproteome, as well as metagenomically assembled genome (MAG)-centric analyses, it is possible to determine not only the functional potential but also the expressed functions of the entire microbial community and also individual MAGs. This approach was used in this study for the production-scale biogas plant 35 (BP35) consisting of three digesters which were operated differently regarding process temperatures, feedstocks and other process parameters. Different process conditions were hypothesized to result in specific microbiome adaptations and differentially abundant metabolic functions in the digesters. Based on metagenomic single-read analyses, several taxa residing in the three digesters of BP35 were shown to correlate with the corresponding substrates and temperatures. In particular, the genus Defluviitoga showed the strongest correlation to the process temperature and the genus Acetomicrobium featured a direct correlation to the concentartions of different acids including acetic acid. Analysis of the functional potential and expressed functions of the entire microbial community of the three digesters revealed that the genes and key enzymes relevant for the biogas process were present and also expressed. Differences between the abundances of certain genes and expressed enzymes could be related to the specific parameters of the corresponding digesters. Regarding the biogas related metabolic pathways, MAG-centric metagenomics and metaproteomics indicated the functional potential and the actual expressed metabolic functions of certain MAGs that are differentially abundant in the three digesters. These MAGs, belonging to the phylum Firmicutes, the class Bacilli and the orders Caldicoprobacterales and Bacteroidales showed a specific metabolic activity within the three digesters and have important roles in the hydrolysis, acidogenesis or acetogenesis of the anaerobic digestion process. An archaeal MAG assigned to the species Methanothermobacter wolfeii was the most abundant and highly active hydrogenotrophic methanogen in digester 3 featuring an operation temperature of 54 °C. Beside the MAGs that were differentially abundant in the three digesters, also MAGs which were more evenly distributed were analyzed. The most abundant and highly active MAG in all digesters belongs to the class Limnochordia and was shown to be ubiquitous in all three digesters and exhibit activity in a variety of pathways representing hydrolysis as well as the acido- and acetogenesis steps of the biogas process. Other MAGs assigned to the phylum Firmicutes, genus Acetomicrobium and the hydrogenotrophic species Methanoculleus thermohydrogenotrophicum were also shown to be more evenly distributed and active in the three digesters. Corresponding taxa appeared to be more resilient to the different process parameters of the three digesters, and therefore, may support a stable biogas process. Overall, the combined metagenome and metaproteome analysis of biogas digesters helps to gain deeper insights into the composition of the whole microbial community, biogas related pathways and their expression, which could contribute to an improved microbiome-based process management in the future.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary transcription profiling data from the mouse hosts have also been deposited at ArrayExpress under accession number E-MTAB-3590 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3590/ ).
Project description:Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate aging associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 old (age>18 years) and 4 young (age 3-6 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in PBMC by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the old animals exhibited higher inflammatory biomarkers in plasma and lower CD4 T cells with altered distribution of naïve and memory T cell maturation subsets. The gut microbiome in old animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of old animals compared to the young. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.