Project description:At present, medical treatments of synchronous and metachronous liver metastases from colorectal cancer are not differentiated. The aim of the study was to analyze the gene expression profiling of synchronous and metachronous lesions in order to identify molecular signatures as possible basis for choice of systemic therapies. Fresh tissues specimens from metastases of 18 patients undergone liver surgery were collected (10 synchronous and 8 metachronous lesions). Gene expression profiling was studied using Affymetrix platform. Two different profiles were identified. Pathway related to the Epidermal Growth Factor receptor (EGFr) was upregulated in metachronous lesions whereas pathways mainly related to inflammation in synchronous lesions. Real Time-PCR, Western Blotting and ELISA confirmed that the metachronous lesions had the overexpression of EGFr, but the synchronous ones had the overexpression of Cyclo-oxygenase 2 (COX-2). These results suggest that synchronous or metachronous liver metastases from colorectal cancer could be differently treated on the basis of different molecular pathways. Keywords: disease state analysis
Project description:In this study, we conducted a microarray-based analysis to identify differentially expressed miRNAs in CRC by comparing miRNA profiles among primary CRC tissues from patients with liver metastases, primary tissues without liver metastases, and liver metastatic lesions. microRNAs (miRNAs) have been shown to have a potential for cancer diagnosis lately. The main objective of this study is to identify a novel biomarker serum miRNA from the patients with colorectal cancer (CRC). Microarray analysis of miRNA expression was performed using paired pre- and post- operative serum from 10 CRC patients. Two miRNAs (let-7a, miR-199a-3p) decreased significantly in the post-operative serum when compared to pre-operative serum (P=0.015 and 0.029, respectively). Microarrays were performed for the testing cohort of primary CRC lesions (n=28) and liver metastatic lesions (n=8).
Project description:We performed whole exome sequencing and copy number analysis for 15 triplets, each comprising normal colorectal tissue, primary colorectal carcinoma, and its synchronous matched liver metastasis. We analyzed the similarities and differences between primary colorectal carcinoma and matched liver metastases in regards to somatic mutations and somatic copy number alterationss (SCNAs). The genomic profiling demonstrated mutations in APC(73%), KRAS (33%), ARID1A and PIK3CA (6.7%) genes between primary colorectal and metastatic liver tumors. TP53 mutation was observed in 47% of the primary samples and 67% in liver metastatic samples. The grouped pairs, in hierarchical clustering showed similar SCNA patterns, in contrast to the ungrouped pairs. Many mutations (including those of known key cancer driver genes) were shared in the grouped pairs. The ungrouped pairs exhibited distinct mutation patterns with no shared mutations in key driver genes. Four ungrouped liver metastasis samples had mutations in DNA mismatch repair genes along with hypermutations and a substantial number of copy number of alterations. Genomically, colorectal and metastatic liver tumors were very similar. However, in a subgroup of patients, there were genetic variations in liver metastases in the loss of DNA mismatch repair genes. Copy number analysis of Affymetrix CytoScanHD arrays was performed for 15 primary colorectal carcinoma and 15 samples of their matched liver metastases. 15 normal samples prepared from each of the patient was used as the reference for the study. Nexus Copy number 6.1 software was used for somatic copy number alteration analysis.
Project description:We performed whole exome sequencing and copy number analysis for 15 triplets, each comprising normal colorectal tissue, primary colorectal carcinoma, and its synchronous matched liver metastasis. We analyzed the similarities and differences between primary colorectal carcinoma and matched liver metastases in regards to somatic mutations and somatic copy number alterationss (SCNAs). The genomic profiling demonstrated mutations in APC(73%), KRAS (33%), ARID1A and PIK3CA (6.7%) genes between primary colorectal and metastatic liver tumors. TP53 mutation was observed in 47% of the primary samples and 67% in liver metastatic samples. The grouped pairs, in hierarchical clustering showed similar SCNA patterns, in contrast to the ungrouped pairs. Many mutations (including those of known key cancer driver genes) were shared in the grouped pairs. The ungrouped pairs exhibited distinct mutation patterns with no shared mutations in key driver genes. Four ungrouped liver metastasis samples had mutations in DNA mismatch repair genes along with hypermutations and a substantial number of copy number of alterations. Genomically, colorectal and metastatic liver tumors were very similar. However, in a subgroup of patients, there were genetic variations in liver metastases in the loss of DNA mismatch repair genes.
Project description:Liver metastasis is one of the major causes of death in colorectal cancer (CRC) patients. To understand this process, we investigated whether the gene expression profiling of matched colorectal carcinomas and liver metastases could reveal key molecular events involved in tumor progression and metastasis. We performed experiments using a cDNA microarray containing 17,104 genes with the following tissue samples: paired tissues of 25 normal colorectal mucosa, 27 primary colorectal tumors, 13 normal liver and 27 liver metastasis, and 20 primary colorectal tumors without liver metastasis. To remove the effect of normal cell contamination, we selected 4,583 organ-specific genes with a false discovery rate (FDR) of 0.0067% by comparing normal colon and liver tissues using significant analysis of microarray, and these genes were excluded from further analysis. We then identified and validated 46 liver metastasis-specific genes with an accuracy of 83.3% by comparing the expression of paired primary colorectal tumors and liver metastases using prediction analysis of microarray. The 46 selected genes contained several known oncogenes and 2 ESTs. To confirm that the results correlated with the microarray expression patterns, we performed RT-PCR with WNT5A and carbonic anhydrase II. Additionally, we observed that 21 of the 46 genes were differentially expressed (FDR = 2.27%) in primary tumors with synchronous liver metastasis compared with primary tumors without liver metastasis. We scanned the human genome using a cDNA microarray and identified 46 genes that may play an important role in the progression of liver metastasis in CRC. Keywords: gene expression profiling using cDNA microarray We performed 17K cDNA microarray with the amplified RNAs from the following tissue samples: normal colorectal mucosa, primary colorectal tumors, normal liver and liver metastasis tumors, and primary colorectal tumors without liver metastasis. Organ-specific genes in normal colon and liver tissues were excluded from the pre-filtered genes, and then we discovered and validated liver metastasis-specific genes commonly up-regulated in the primary colorectal tumors and liver metastasis tumors. To confirm the microarray data, we performed a RT-PCR of two genes (WNT5A and carbonic anhydrase II) in the primary colorectal tumors with and without liver metastases.
Project description:About 50% of colorectal cancer patients develop liver metastases. Patients with metastatic colorectal cancer have 5-year survival rates below 20% despite new therapeutic regimens. Tumor heterogeneity has been linked with poor clinical outcome, but was so far mainly studied via bulk genomic analyses. In this study we performed spatial proteomics via MALDI mass spectrometry imaging on six patient matched CRC primary tumor and liver metastases to characterize interpatient, intertumor and intratumor hetereogeneity. We found several peptide features that were enriched in vital tumor areas of primary tumors and liver metastasis and tentatively derived from tumor cell specific proteins such as annexin A4 and prelamin A/C. Liver metastases of colorectal cancer showed higher heterogeneity between patients than primary tumors while within patients both entities show similar intratumor heterogeneity sometimes organized in zonal pattern. Together our findings give new insights into the spatial proteomic heterogeneity of primary CRC and patient matched liver metastases.
Project description:Dissemination of primary tumors to distant anatomical sites has a substantial negative impact on patient prognosis. The liver is a common site for metastases from colorectal cancer, and patients with hepatic metastases have generally much shorter survival, raising a need to develop and implement novel strategies for targeting metastatic disease. The extracellular matrix (ECM) is a meshwork of highly crosslinked, insoluble, high molecular weight proteins maintaining tissue integrity and establishing cell-cell interactions. Emerging evidence identifies the importance of the ECM in cancer cell migration, invasion, intravasation, and metastasis. Here, we isolated the extracellular matrix from MC38 mouse liver metastases using our optimized method of mild detergent solubilization followed by biochemical enrichment. The matrices were subjected to label-free quantitative mass spectrometry analysis, revealing proteins highly abundant in the metastatic matrisome. The resulting list of differentially expressed proteins significantly predicted survival in patients with colorectal cancer but not other cancers with strong involvement of the extracellular matrix component. One of the proteins upregulated in liver metastatic ECM, Annexin A1, was not previously studied in the context of cancer-associated matrisome. Here we show that Annexin A1 was markedly upregulated in colon cancer cell lines compared to cancer cells of other origin, and also overrepresented in human primary colorectal lesions as well as hepatic metastases in comparison with their adjacent healthy tissue counterparts. In conclusion, our study provides a comprehensive ECM characterization of MC38 experimental liver metastases and proposes Annexin A1 as a putative target for this disease.
Project description:In this study, we conducted a microarray-based analysis to identify differentially expressed miRNAs in CRC by comparing miRNA profiles among primary CRC tissues from patients with liver metastases, primary tissues without liver metastases, and liver metastatic lesions. microRNAs (miRNAs) have been shown to have a potential for cancer diagnosis lately. The main objective of this study is to identify a novel biomarker serum miRNA from the patients with colorectal cancer (CRC). Microarray analysis of miRNA expression was performed using paired pre- and post- operative serum from 10 CRC patients. Two miRNAs (let-7a, miR-199a-3p) decreased significantly in the post-operative serum when compared to pre-operative serum (P=0.015 and 0.029, respectively).
Project description:Liver metastasis is one of the major causes of death in colorectal cancer (CRC) patients. To understand this process, we investigated whether the gene expression profiling of matched colorectal carcinomas and liver metastases could reveal key molecular events involved in tumor progression and metastasis. We performed experiments using a cDNA microarray containing 17,104 genes with the following tissue samples: paired tissues of 25 normal colorectal mucosa, 27 primary colorectal tumors, 13 normal liver and 27 liver metastasis, and 20 primary colorectal tumors without liver metastasis. To remove the effect of normal cell contamination, we selected 4,583 organ-specific genes with a false discovery rate (FDR) of 0.0067% by comparing normal colon and liver tissues using significant analysis of microarray, and these genes were excluded from further analysis. We then identified and validated 46 liver metastasis-specific genes with an accuracy of 83.3% by comparing the expression of paired primary colorectal tumors and liver metastases using prediction analysis of microarray. The 46 selected genes contained several known oncogenes and 2 ESTs. To confirm that the results correlated with the microarray expression patterns, we performed RT-PCR with WNT5A and carbonic anhydrase II. Additionally, we observed that 21 of the 46 genes were differentially expressed (FDR = 2.27%) in primary tumors with synchronous liver metastasis compared with primary tumors without liver metastasis. We scanned the human genome using a cDNA microarray and identified 46 genes that may play an important role in the progression of liver metastasis in CRC. Keywords: gene expression profiling using cDNA microarray