Project description:Vaccines against SARS-CoV-2 are the most effective measure against the COVID-19 pandemic. The safety profile of mRNA vaccines in patients with rare diseases has not been assessed systematically in the clinical trials, as these patients were typically excluded. This report describes the occurrence of agranulocytosis within days following the first dose of an mRNA-1273 vaccination against COVID-19 in a previously healthy older adult. The patient was diagnosed with a suspected STAT3 wild-type T-cell large granular lymphocytic leukaemia (T-LGL). Neutropenia was successfully treated with IVIG, glucocorticoids, and G-CSF. In vitro experiments aimed at elucidating the pathways potentially causing the mRNA vaccine-associated neutropenia indicated that the mRNA, but not the adenoviral Ad26.COV2.S vector vaccine, triggered strong IL-6/STAT3 activation in vitro, resulting in excessive T-cell activation and neutrophil degranulation in the patient but not in controls. mRNA-1273 activated TLR-3 suggesting TLR mediated IL-6/STAT3 pathway activation. To complete the primary series of COVID-19 immunization, we used a single dose of Ad26.COV2.S vector vaccine without reoccurrence of neutropenia. The T-LGL clone remained stable during the follow-up of more than 12 months without ongoing therapy. Our data suggest that switching the immunization platform may be a reasonable approach in subjects with rare associated hematologic side effects due to excess STAT3-mediated stimulation following mRNA vaccination. Using in vitro testing before re-administration of a (COVID) vaccine also has relevance for other rare immune events after (mRNA) vaccination.
Project description:TCRαβ CD8 large granular lymphocyte (LGL) leukemia is a rare heterogeneous hematological disorder with a chronic disease course that mostly affects elderly. It is generally accepted that LGL cells arise as a consequence of chronic antigenic stimulation and inflammation and thrive because of dysregulation of mainly the STAT3 but also to some extent the ERK pathway, which are constitutively activated. In approximately 40% of patients this is due to STAT3 activating mutations, but for the other 60% it remains to be elucidated, why the STAT3 pathway is chronically activated. miRNAs are one of the most potent regulators in health and disease and are also linked with various leukemias. Therefore, we hypothesized that aberrant miRNA expression could contribute to dysregulation of the STAT3 pathway. miRNA sequencing in LGL leukemia cases and aged-matched healthy control TEMRA cells revealed overexpression of miRNA181a. Furthermore, gene set enrichment analysis (GSEA) of miRNA181a implicated its involvement in the STAT3 and ERK1/2 pathways. Phosphoflow analysis of STAT3, ERK1/2 in miR181a-transfected human CD8 T cells revealed that miR181a overexpression results in STAT3 and ERK1/2 phosphorylation. By using TL1, a human T-LGL cell line model, we have now established that miR181a is the common actor in T-LGL leukemia, driving STAT3 activation by SOCS3 inhibition in LGL leukemia patients. Additionally, miR181a induces ERK1/2 phosphorylation by inhibition of DUSP6. Taken together, our data show that miR181a is the missing link to explain why STAT3-unmutated patients show hyperactive STAT3.
Project description:TCRαβ CD8 large granular lymphocyte (LGL) leukemia is a rare heterogeneous hematological disorder with a chronic disease course that mostly affects elderly. It is generally accepted that LGL cells arise as a consequence of chronic antigenic stimulation and inflammation and thrive because of dysregulation of mainly the STAT3 but also to some extent the ERK pathway, which are constitutively activated. In approximately 40% of patients this is due to STAT3 activating mutations, but for the other 60% it remains to be elucidated, why the STAT3 pathway is chronically activated. miRNAs are one of the most potent regulators in health and disease and are also linked with various leukemias. Therefore, we hypothesized that aberrant miRNA expression could contribute to dysregulation of the STAT3 pathway. miRNA sequencing in LGL leukemia cases and aged-matched healthy control TEMRA cells revealed overexpression of miRNA181a. Furthermore, gene set enrichment analysis (GSEA) of miRNA181a implicated its involvement in the STAT3 and ERK1/2 pathways. Phosphoflow analysis of STAT3, ERK1/2 in miR181a-transfected human CD8 T cells revealed that miR181a overexpression results in STAT3 and ERK1/2 phosphorylation. By using TL1, a human T-LGL cell line model, we have now established that miR181a is the common actor in T-LGL leukemia, driving STAT3 activation by SOCS3 inhibition in LGL leukemia patients. Additionally, miR181a induces ERK1/2 phosphorylation by inhibition of DUSP6. Taken together, our data show that miR181a is the missing link to explain why STAT3-unmutated patients show hyperactive STAT3.
Project description:To identify Lgl binding proteins, we purified Lgl-containing protein complexes from cultured Drosophila S2 cells, using the single-step streptavidin purification from stable cell lines expressing SBP-tagged Lgl, followed by nanoLC-MS/MS analysis of the interactors. This study revealed the binding of Lgl to Vap33, which we further connected to the function of the vacuolar ATPase and regulation of Notch signaling.
Project description:Recent studies suggest the potential involvement of common antigenic stimuli on the ontogeny of monoclonal TCRalphabeta+/CD4+/NKa+/CD8-/+dim T-large granular lymphocyte (LGL) lymphocytosis. Since healthy individuals show (oligo)clonal expansions of hCMV-specific TCRVbeta+/CD4+/cytotoxic/memory T-cells, we investigate the potential involvement of hCMV in the origin and/or expansion of monoclonal CD4+ T-LGL. A detailed characterization of those genes that underwent changes in T-LGL cells responding to hCMV was performed by microarray gene expression profile (GEP) analysis.
Project description:We used microarrays to expression profile peripheral blood mononuclear cells (PBMCs) from LGL leukemia patients and control subjects to identify survival pathways that render leukemic LGL resistant to activation induced cell death. Keywords: granular lymphocyte leukemia, PBMC
Project description:Single channel custom oligonucleotide array of 147 microRNAs to detect changes in expression of a lgl-hypomorph mutant versus wild-type 0, 3, and 5 day old 3rd instar lgl-hypomorph larvae were compared to 0 day 3rd instar wild-type larvae to test for differences in microRNA expression
Project description:Recent studies suggest the potential involvement of common antigenic stimuli on the ontogeny of monoclonal TCRalphabeta+/CD4+/NKa+/CD8-/+dim T-large granular lymphocyte (LGL) lymphocytosis. Since healthy individuals show (oligo)clonal expansions of hCMV-specific TCRVbeta+/CD4+/cytotoxic/memory T-cells, we investigate the potential involvement of hCMV in the origin and/or expansion of monoclonal CD4+ T-LGL. A detailed characterization of those genes that underwent changes in T-LGL cells responding to hCMV was performed by microarray gene expression profile (GEP) analysis. Experiment Overall Design: Total RNA was isolated from magnetic-activated cell sorter (MACS)-freshly purified hCMV-stimulated CD69+, hCMV-stimulated CD69- and unstimulated monoclonal CD4+ T-LGL lymphocytes from PB samples from four TCRVbeta+/CD4+ T-LGL lymphocytosis patients (purity of �98%). Briefly, 100 ng of total RNA from each of the 12 purified cell fractions was amplified and labeled using the GeneChip two cycle cDNA synthesis kit and the GeneChip IVT labeling kit (Affymetrix Inc., Santa Clara, CA), respectively. Then it was hybridized to the Human Genome U133 Plus 2.0 Array (Affymetrix). Experiment Overall Design: In parallel, total RNA was also isolated from highly purified (� 98% purity) hCMV-stimulated (specific) CD69+ CD4+ T-lymphocytes isolated from PB samples from hCMV-seropositive healthy donors (n=5, mean age of 36 years) using a FACSAria flow cytometer (BDB). To get pure and highly concentrated RNA, the silica membrane technology NucleoSpin® RNA XS (Macherey-Nagel, Düren, Germany) was used. Total RNA was then amplified, labeled and hybridized to the Human Genome U133 Plus 2.0 Array (Affymetrix) as described above.