Project description:By comparing transcriptomes of tolerant and intolerant plants of sickle alfalfa subject to intensive animal grazing, we identified pathways involved in nutrient-responsive signaling, light and wound response, cell wall formation, and energy metabolism. In these pathways, grazing suppressed 39 genes, but less severe in the tolerant plant, and activated 5 genes all carrying polymorphisms in their homologous transcripts between the tolerant and intolerant plants. These genes and pathways - responsive to grazing and differentially expressed between the tolerant and intolerant plants – underline a defense mechanism in alfalfa against grazing stresses.
Project description:By comparing transcriptomes of tolerant and intolerant plants of sickle alfalfa subject to intensive animal grazing, we identified pathways involved in nutrient-responsive signaling, light and wound response, cell wall formation, and energy metabolism. In these pathways, grazing suppressed 39 genes, but less severe in the tolerant plant, and activated 5 genes all carrying polymorphisms in their homologous transcripts between the tolerant and intolerant plants. These genes and pathways - responsive to grazing and differentially expressed between the tolerant and intolerant plants â?? underline a defense mechanism in alfalfa against grazing stresses. We examined transcriptomes of 3 alfalfa plants: grazing tolerant and grazed, grazing tolerant and not grazed, grazing intolerant and grazed, all at single replicate each.
Project description:Cancer cell metabolism is heavily influenced by microenvironmental factors, including nutrient availability. Therefore, knowledge of microenvironmental nutrient levels is essential to understand tumor metabolism. To measure the extracellular nutrient levels available to tumors, we developed a quantitative metabolomics method to measure the absolute concentrations of >118 metabolites in plasma and tumor interstitial fluid, the extracellular fluid that perfuses tumors. Comparison of nutrient levels in tumor interstitial fluid and plasma revealed that the nutrients available to tumors differ from those present in circulation. Further, by comparing interstitial fluid nutrient levels between autochthonous and transplant models of murine pancreatic and lung adenocarcinoma, we found that tumor type, anatomical location and animal diet affect local nutrient availability. These data provide a comprehensive characterization of the nutrients present in the tumor microenvironment of widely used models of lung and pancreatic cancer and identify factors that influence metabolite levels in tumors.
Project description:To investigate the potential effect of grazing movement on miRNA circulation in cattle, here we profiled miRNA expression in centrifugally prepared exosomes from the plasma of both grazing and housed Japanese Shorthorn cattle. Microarray analysis of the c-miRNAs resulted in detection of a total of 231 bovine exosomal miRNAs in the plasma, with a constant expression level of let-7g across the duration and cattle groups. Expression of muscle-specific miRNAs such as miR-1, miR-133a, miR-206, miR-208a/b, and miR-499 were undetectable, suggesting the mildness of grazing movement as exercise.
Project description:Aquatic microorganisms are typically identified as either oligotrophic or copiotrophic, representing trophic strategies adapted to low or high nutrient concentrations, respectively. Here, we sought to take steps towards identifying these and additional adaptations to nutrient availability with a quantitative analysis of microbial resource use in mixed communities. We incubated an estuarine microbial community with stable isotope labeled amino acids (AAs) at concentrations spanning three orders of magnitude, followed by taxon-specific quantitation of isotopic incorporation using NanoSIMS analysis of high-density microarrays. The resulting data revealed that trophic response to AA availability falls along a continuum between copiotrophy and oligotrophy, and high and low activity. To illustrate strategies along this continuum more simply, we statistically categorized microbial taxa among three trophic types, based on their incorporation responses to increasing resource concentration. The data indicated that taxa with copiotrophic-like resource use were not necessarily the most active, and taxa with oligotrophic-like resource use were not always the least active. Two of the trophic strategies were not randomly distributed throughout a 16S rDNA phylogeny, suggesting they are under selective pressure in this ecosystem and that a link exists between evolutionary relatedness and substrate affinity. The diversity of strategies to adapt to differences in resource availability highlights the need to expand our understanding of microbial interactions with organic matter in order to better predict microbial responses to a changing environment. manuscript accepted by PLoS ONE 4 datasets: 1) fluorescence data for 3 treatments combined, 2) isotopic data for treatment = LOW, 3) isotopic data for treatment = MEDIUM, 4) isotopic data for treatment = HIGH
Project description:mTORC2 senses nutrients and coordinates substrate metabolism and macromolecule synthesis program with the availability of external nutrient availability. Knockdown of mTORC2 components and its chaperone partners impairs both nutrient sensing and downstrem metabolism/growth programs.