Project description:Biotechnology suggests that microorganisms can be used as chemical factories that transform renewable feedstock into value-added chemicals. Conversion of glycerol, using direct transformation or fermentation, into valuable products such as polymers, surfactants, solvents, and chemical intermediates has attained growing interest in recent years due to the dramatic growth of the biodiesel industry. However, the use of cell factories could be limited by low growth and uptake rates under certain environmental conditions, thus understanding microbial nutritional requirements is a critical point to use them as cell factories. Here, we compared E. coli ATCC 8739 transcriptomic responses to glycerol under aerobic conditions in an optimized culture medium (Condition 3) and one evolved strain in glycerol using as a reference a glycerol-based medium (Condition 11). Our analyses revealed 478 and 431 differentially expressed genes (DEGs) with log2 fold change (FC) > |2| and p Adjusted value < 0.05, for the bacteria growing in the optimized culture medium and the evolved strain, respectively. Among the DEGs, glp operon was found to be up-regulated as a response to glycerol uptake. Interestingly, between them, it was found genes that requires the use of phosphorous to ovoid the toxicity during glycerol consumption. Previously, we identified using a computational approach that phosphorous and nitrogen are essential compound that support high glycerol consumption in E. coli.
Project description:Rsf1p is a putative transcription factor required for efficient growth using glycerol as sole carbon source but not for growth on the alternative respiratory carbon source ethanol. We use microarrays to determine the differences in the transcriptional program between the Δrsf1 mutant and the wild type during respiratory growth on glycerol as well as the transition to growth on glycerol as sole carbon source. Keywords: Mutant analysis during timecourse following switching carbon source from dextrose to glycerol
Project description:Cupriavidus necator H16 is a non-pathogenic Gram-negative betaproteobacterium that can utilize a broad range of renewable heterotrophic resources to produce chemicals ranging from polyhydroxybutyrate (biopolymer) to alcohols, alkanes, and alkenes. However, C. necator H16 utilizes carbon sources to different efficiency, for example its growth in glycerol is 11.4 times slower than a favorable substrate like gluconate. This work used adaptive laboratory evolution to enhance the glycerol assimilation in C. necator H16 and identified a variant (v6C6) that can co-utilize gluconate and glycerol. The v6C6 variant has a specific growth rate in glycerol 9.5 times faster than the wild-type strain and grows faster in mixed gluconate-glycerol carbon sources compared to gluconate alone. It also accumulated more PHB when cultivated in glycerol medium compared to gluconate medium while the inverse is true for the wild-type strain. Through genome sequencing and expression studies, glycerol kinase was identified as the key enzyme for its improved glycerol utilization. The superior performance of v6C6 in assimilating pure glycerol was extended to crude glycerol (sweetwater) from an industrial fat splitting process. These results highlight the robustness of adaptive laboratory evolution for strain engineering and the versatility and potential of C. necator H16 for industrial waste glycerol valorization.
Project description:Laboratory adaptive evolution experiments were conducted using serial passage of E. coli in M9 minimal medium supplemented with either 2 g/L of lactate for 60 days or 2 g/L of glycerol for 44 days. 7 parallel evolution strains were generated for growth on lactate and 7 parallel evolution strains were generated for growth on glycerol. Affymetrix arrays were used to study the time-course change in gene expression from unevolved E. coli (day 0) to a midpoint evolved strain (day 20) and evolutionary endpoints
Project description:Gas fermentation of CO₂ and H₂ is an attractive means to sustainably produce fuels and chemicals. Clostridium autoethanogenum is a model organism for industrial CO-to-ethanol and presents an opportunity for CO₂-to-ethanol processes. As we have previously characterized its CO₂/H₂ chemostat growth, here we use adaptive laboratory evolution (ALE) with the aim of improving growth with CO₂/H₂. Seven ALE lineages were generated, all with improved specific growth rates. Developed with 2% CO supplementation of CO₂/H₂, Evolved lineage D has the highest ethanol/acetate of ALE lineages when fermenting CO₂/H₂. Chemostat comparison against the parental strain shows no change in acetate or ethanol production, while Evolved D could achieve a higher maximum dilution rate. Complete multi-omics analyses at steady-state revealed that although Evolved D has widespread proteome changes, intracellular metabolites prevent phenotype shifts. Yet, we observe numerous insights to CO₂/H₂ metabolism via these multi-omics results and link these to mutations, suggesting novel targets for metabolic engineering.
Project description:Gas fermentation of CO₂ and H₂ is an attractive means to sustainably produce fuels and chemicals. Clostridium autoethanogenum is a model organism for industrial CO-to-ethanol and presents an opportunity for CO₂-to-ethanol processes. As we have previously characterized its CO₂/H₂ chemostat growth, here we use adaptive laboratory evolution (ALE) with the aim of improving growth with CO₂/H₂. Seven ALE lineages were generated, all with improved specific growth rates. Developed with 2% CO supplementation of CO₂/H₂, Evolved lineage D has the highest ethanol/acetate of ALE lineages when fermenting CO₂/H₂. Chemostat comparison against the parental strain shows no change in acetate or ethanol production, while Evolved D could achieve a higher maximum dilution rate. Complete multi-omics analyses at steady-state revealed that although Evolved D has widespread proteome changes, intracellular metabolites prevent phenotype shifts. Yet, we observe numerous insights to CO₂/H₂ metabolism via these multi-omics results and link these to mutations, suggesting novel targets for metabolic engineering.
Project description:Rsf1p is a putative transcription factor required for efficient growth using glycerol as sole carbon source but not for growth on the alternative respiratory carbon source ethanol. We use microarrays to determine the differences in the transcriptional program between the delta-rsf1 mutant and the wild type during respiratory growth on glycerol as well as the transition to growth on glycerol as sole carbon source. Experiment Overall Design: delta-rsf1or the isogenic parent strain were grown to early log (A600=0.6) in YPD and then washed twice in prewarmed YPG (30 C) and returned to the air shaker in YPG for 15, 30 or 60 minutes. "Limit" conditions were provided by harvesting cells grown in YPD to early log phase without shifting to YPG and by harvesting cells grown in YPG to early log phase. Since the delta-rsf1 mutant and its isogenic parent strain grow equally well on the respiratory carbon source ethanol, cells were also harvested after being grown in ethanol to early log phase.
Project description:Laboratory adaptive evolution experiments were conducted using serial passage of E. coli in M9 minimal medium supplemented with either 2 g/L of lactate for 60 days or 2 g/L of glycerol for 44 days. 7 parallel evolution strains were generated for growth on lactate and 7 parallel evolution strains were generated for growth on glycerol. Affymetrix arrays were used to study the time-course change in gene expression from unevolved E. coli (day 0) to a midpoint evolved strain (day 20) and evolutionary endpoints Biological replicate arrays were conducted for each of the time points tested for the different evolution strains
Project description:Adaptation to altered osmotic conditions is a fundamental property of living cells and has been studied in particular detail in the yeast Saccharomyces cerevisiae. Yeast cells accumulate glycerol as compatible solute, controlled at different levels by the High Osmolarity Glycerol (HOG) response pathway. Up to now, essentially all osmostress studies in yeast have been performed with glucose as carbon and energy source, which is metabolised by glycolysis with glycerol is as a normal by-product. Here we investigated the response of yeast to osmotic stress when yeast is respiring ethanol as carbon and energy source. Remarkably, yeast cells do not accumulate glycerol under these conditions and it appears that trehalose may partly take over the role as compatible solute. The HOG pathway is activated in very much the same way as in during growth on glucose medium and is also required for osmotic adaptation. Slower volume recovery was observed in ethanol-grown cells as compared to glucose-grown cells. Dependence on key regulators as well as the global gene expression profile were similar in many ways to those previously observed in glucose-grown cells. However, there are indications that cells re-arrange redox-metabolism when respiration is hampered under osmostress, a feature that could not be observed in glucose-grown cells.
Project description:In this study, we constructed three isogenic strains of S96 yrr1Δ background (its native YRR1 gene was knocked out) carrying three different YRR1 alleles, YRR1_S96, YRR1_YJM789 and YRR1_S96-I775E, respectively. We then conducted RNA deep sequencing (RNA-Seq) on the three strains grown in Yeast Peptone Dextrose medium (YPD), YPD + 4NQO and Yeast Peptone glycerol medium (YPglycerol).