Project description:To study the efficiency of a semi-automated technique of oocyte vitrification as compared with a manual method and transcriptomic landscape associated with the oocyte vitrification.
Project description:BACKGROUND: Array Comparative Genomic Hybridization (aCGH) is a rapidly evolving technology that still lacks complete standardization. Yet, it is of great importance to obtain robust and reproducible data to enable meaningful multiple hybridization comparisons. Special difficulties arise when aCGH is performed on archival formalin-fixed, paraffin-embedded (FFPE) tissue due to its variable DNA quality. Recently, we have developed an effective DNA quality test that predicts suitability of archival samples for BAC aCGH. METHODS: In this report, we first used DNA from a cancer cell-line (SKBR3) to optimize the aCGH protocol for automated hybridization, and subsequently optimized and validated the procedure for FFPE breast cancer samples. We aimed for highest throughput, accuracy, and reproducibility applicable to FFPE samples, which can also be important in future diagnostic use. RESULTS: Our protocol of automated array-CGH on archival FFPE ULS-labeled DNA showed very similar results compared with published data and our previous manual hybridization method. CONCLUSION: This report combines automated aCGH on unamplified archival FFPE DNA using non-enzymatic ULS labeling, and describes an optimized protocol for this combination resulting in improved quality and reproducibility. In this study, we optimized the BAC araay-CGH protocol for automated hybridization for FFPE breast cancer samples. We have tested hybridization temperature and duration, different hybridization buffer conditions, and post-hybridization washing.
Project description:Advances in several key technologies, including MHC peptidomics, has helped fuel our understanding of basic immune regulatory mechanisms and identify T cell receptor targets for the development of immunotherapeutics. Isolating and accurately quantifying MHC-bound peptides from cells and tissues enables characterization of dynamic changes in the ligandome due to cellular perturbations. This multi-step analytical process remains challenging, and throughput and reproducibility are paramount for rapidly characterizing multiple conditions in parallel. Here, we describe a robust and quantitative method whereby peptides derived from MHC-I complexes from a variety of cell lines, including challenging adherent lines, can be enriched in a semi-automated fashion on reusable, dry-storage, customized antibody cartridges. TOMAHAQ, a targeted mass spectrometry technique that combines sample multiplexing and high sensitivity, was employed to characterize neoepitopes displayed on MHC-I by tumor cells and to quantitatively assess the influence of neoantigen expression and induced degradation on neoepitope presentation.
Project description:Development of an improved workflow for newly synthesized proteome analysis, based on combined pulsed metabolic labelling with L-azidohomoalanine (AHA) and semi-automated click chemistry-based enrichments with magnetic alkyne agarose beads.
Project description:BACKGROUND: Array Comparative Genomic Hybridization (aCGH) is a rapidly evolving technology that still lacks complete standardization. Yet, it is of great importance to obtain robust and reproducible data to enable meaningful multiple hybridization comparisons. Special difficulties arise when aCGH is performed on archival formalin-fixed, paraffin-embedded (FFPE) tissue due to its variable DNA quality. Recently, we have developed an effective DNA quality test that predicts suitability of archival samples for BAC aCGH. METHODS: In this report, we first used DNA from a cancer cell-line (SKBR3) to optimize the aCGH protocol for automated hybridization, and subsequently optimized and validated the procedure for FFPE breast cancer samples. We aimed for highest throughput, accuracy, and reproducibility applicable to FFPE samples, which can also be important in future diagnostic use. RESULTS: Our protocol of automated array-CGH on archival FFPE ULS-labeled DNA showed very similar results compared with published data and our previous manual hybridization method. CONCLUSION: This report combines automated aCGH on unamplified archival FFPE DNA using non-enzymatic ULS labeling, and describes an optimized protocol for this combination resulting in improved quality and reproducibility.
Project description:Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) hold great promise for liver disease modeling, drug discovery, drug toxicity screens, or even regenerative therapies. Yet, several hurdles still need to be overcome, including among others decrease in the cost of goods to generate HLCs and automation of the differentiation process. We here describe that use of an automated liquid handling system results in highly reproducible HLC differentiation from hPSCs. This enabled us to screen 92 chemicals to replace expensive growth factors at each step of the differentiation protocol to reduce the cost of goods of the differentiation protocol by approximately 79%. In addition, we also evaluated several recombinant extracellular matrices (ECM) to replace Matrigel. We demonstrated that differentiation of hPSCs on Laminin-521 using an optimized small molecule combination resulted in HLCs that were transcriptionally identical to HLCs generated using current growth factor combinations. In addition, the HLCs created using the optimized small molecule combination also secreted similar concentrations of albumin and urea, and relatively low concentrations of alfa-fetoprotein (AFP), displayed similar CYP3A4 functionality and a similar drug toxicity susceptibility as HLCs generated with growth factor cocktails. The broad applicability of the new differentiation protocol was demonstrated for four different hPSC lines. This allowed the creation of a scalable, xeno-free, and cost-efficient hPSC-derived HLC culture, suitable for high throughput disease modeling and drug screenings, or even for the creation of HLCs for regenerative therapies.
Project description:Samples generated with a newly development semi-automated enrichment protocol for newly synthesized proteins, using different amounts of protein input, were analysed using data-independent acquisition (DIA) and processed with the plexDIA software features of DIA-NN (https://www.nature.com/articles/s41587-022-01389-w).
2023-10-19 | PXD043817 | Pride
Project description:EditID: open-access workflow for the multiplexed, semi-automated identification of CRISPR edited cell clones.
Project description:We present AutoRELACS, an automated implementation of the RELACS protocol using the Biomek i7 automated workstation (Beckman&Coulter). We test the performance of AutoRELACS by assessing 1) the scalability of the chromatin barcode integration step, 2) the quality of the generated data in comparison to the benchmark set by the manual protocol, and 3) the sensitivity of the automated method when working with low (≤ 25.000 cells/sample) and very low (≤ 5.000 cells/sample) cell numbers.