Project description:We used flower bud transcriptomes from Collinsia rattanii and its predominantly outcrossing sister species, C. linearis, to explore the genomic basis of mating system and phenotypic evolution in Collinsia, a self-compatible genus. Transcriptional regulation of enzymes involved in pollen formation may influence floral traits that distinguish selfing and outcrossing Collinsia species through pleiotropic functions. These patterns provide clues about parallel evolution in selfing plants.
Project description:Hymenoscyphus linearis isolate chi01 was grown on potato dextrose broth for 3 weeks. RNA was extracted from the mycelial mat and the library was prepared with TruSeq Stranded mRNA LT Sample Prep Kit and sequenced with HiSeq 2500 (2x100 bp).
Project description:Analyses of new genomic, transcriptomic or proteomic data commonly result in trashing many unidentified data escaping the ‘canonical’ DNA-RNA-protein scheme. Testing systematic exchanges of nucleotides over long stretches produces inversed RNA pieces (here named “swinger” RNA) differing from their template DNA. These may explain some trashed data. Here analyses of genomic, transcriptomic and proteomic data of the pathogenic Tropheryma whipplei according to canonical genomic, transcriptomic and translational 'rules' resulted in trashing 58.9% of DNA, 37.7% RNA and about 85% of mass spectra (corresponding to peptides). In the trash, we found numerous DNA/RNA fragments compatible with “swinger” polymerization. Genomic sequences covered by «swinger» DNA and RNA are 3X more frequent than expected by chance and explained 12.4 and 20.8% of the rejected DNA and RNA sequences, respectively. As for peptides, several match with “swinger” RNAs, including some chimera, translated from both regular, and «swinger» transcripts, notably for ribosomal RNAs. Congruence of DNA, RNA and peptides resulting from the same swinging process suggest that systematic nucleotide exchanges increase coding potential, and may add to evolutionary diversification of bacterial populations.