Project description:The spread of multidrug-resistant (MDR) bacteria, such as the skin commensal Staphylococcus aureus, is a worldwide heath challenge; therefore, new methods to counteract the over-colonization and virulence of opportunistic pathogenic biotypes are highly urgent. We characterized and compared the activity of Lacticaseibacillus rhamnosus LR06 (DSM 21981) and Lactobacillus johnsonii LJO02 (DSM 33828) cell-free supernatants (CFSs), produced in a conventional animal-based MRS medium and in an innovative vegetal TIL, versus the MDR Staphylococcus aureus (ATCC 43300). CFSs were analysed via high-resolution mass spectrometry and gas-chromatography for short chain fatty acids (SCFAs), lactic acid and protein composition, while their activity was assessed towards i) the viability and metabolic activity of the MRSA strain through optical density and alamarBlue assay, and ii) the capability to inhibit/disaggregate the pathogenic biofilm, via crystal violet staining. All the CFSs reduce viable and metabolically active S. aureus, with the TIL medium more efficient, respect to MRS, in stimulating lactic acid bacteria metabolism and reducing the virulent biofilm. CFSs from LJO02 produced in TIL are the best, thanks to specific SCFAs and proteic metabolites. In conclusion, antagonistic non-pathogenic CFSs represent a promising and strategic approach, with potential applications as bacteriotherapy, and bioremediation of hospital equipments surfaces.
Project description:Lichens are a source of secondary metabolites with significant pharmacological potential. Data regarding their possible application in glioblastoma (GBM) treatment are, however scarce. The study aimed to analyze the mechanism of action of six lichen secondary metabolites: atranorin, caperatic acid, physodic acid, squamatic acid, salazinic acid, and lecanoric acid using two- and three-dimensional GBM cell line models. The Parallel Artificial Membrane Permeation Assay was used to predict the blood-brain barrier penetration ability of the tested compounds. Their cytotoxicity was analyzed using MTT test on A-172, T98G, and U-138 MG cells. Flow cytometry was applied for the analysis of oxidative stress, cell cycle distribution, and apoptosis, whereas qPCR and microarrays detected the induced transcriptomic changes. Our data confirm the ability of lichen secondary metabolites to cross the blood-brain barrier and exert cytotoxicity against GBM cells. Moreover, the compounds generated oxidative stress, interfered with the cell cycle, and induced apoptosis in T98G cells. They also inhibited Wnt/β-catenin pathway, and this effect was even stronger in case of a co-treatment with temozolomide. Transcriptomic changes in cancer related genes induced by caperatic acid and temozolomide were the most pronounced. Lichen secondary metabolites, in particular caperatic acid should be further analyzed as potential anti-GBM agents.
Project description:The complex bacterial populations that constitute the gut microbiota can harbor antibiotic resistance genes (ARGs), including those encoding β-lactamase enzymes (BLA), which degrade commonly prescribed antibiotics such as ampicillin. The prevalence of such genes in commensal bacteria has been increased in recent years by the wide use of antibiotics in human populations and in livestock. While transfer of ARGs between bacterial species has well-established dramatic public health implications, these genes can also function in trans within bacterial consortia, where antibiotic-resistant bacteria can provide antibiotic-sensitive neighbors with leaky protection from drugs, as shown both in vitro and in vivo, in models of lung and subcutaneous coinfection. However, whether the expression of ARGs by harmless commensal bacterial species can destroy antibiotics in the intestinal lumen and shield antibiotic-sensitive pathogens is unknown. To address this question, we colonized germfree or wild-type mice with a model intestinal commensal strain of Escherichia coli that produces either functional or defective BLA. Mice were subsequently infected with Listeria monocytogenes or Clostridioides difficile, followed by treatment with oral ampicillin. The production of functional BLA by commensal E. coli markedly reduced clearance of these pathogens and enhanced systemic dissemination during ampicillin treatment. Pathogen resistance was independent of ARG acquisition via horizontal gene transfer but instead relied on antibiotic degradation in the intestinal lumen by BLA. We conclude that commensal bacteria that have acquired ARGs can mediate shielding of pathogens from the bactericidal effects of antibiotics.
Project description:Genetic and molecular evidence to support the hypothesis that fungal secondary metabolites play a significant role in protecting the fungi against fungivory is scarce. We investigated the impact of fungal secondary metabolites on transcript regulation of stress related expressed sequence tags (ESTs) of the Collembola Folsomia candida feeding on mixed vs. single diets. Aspergillus nidulans wildtype (WT; Ascomycota) able to produce secondary metabolites including sterigmatocystin (ST) and a knockout mutant with reduced secondary metabolism (A. nidulans ΔLaeA) were combined with the high quality fungus Cladosporium cladosporioides as mixed diets or offered as single diets. We hypothesized that (i) A. nidulans WT triggers more genes associated with stress responses compared to the A. nidulans ΔlaeA strain with suppressed secondary metabolism, (ii) C. cladosporioides causes significantly different transcript regulation than the A. nidulans strains ΔlaeA and WT, and (iii) mixed diets will cause significantly different transcript expression levels than single diets. All three hypotheses are generally supported despite the fact that many functions of the affected ESTs are unknown. The results bring molecular evidence for the existence of a link between fungal secondary metabolites and responses in springtails supporting the hypothesis that fungal secondary metabolites act as a shield against fungivory.
Project description:Intestinal bacterial metabolites are an important communication tool between the host immune system and the commensal microbiota to establish mutualism. In a recent paper published in Science, Wendy Garrett and her colleagues report an exciting role of the three most abundant microbial-derived short-chain fatty acids (SCFA), acetic acid, propionic acid and butyric acid, in colonic regulatory T cell (cTreg) homeostasis.
Project description:Genetic and molecular evidence to support the hypothesis that fungal secondary metabolites play a significant role in protecting the fungi against fungivory is scarce. We investigated the impact of fungal secondary metabolites on transcript regulation of stress related expressed sequence tags (ESTs) of the Collembola Folsomia candida feeding on mixed vs. single diets. Aspergillus nidulans wildtype (WT; Ascomycota) able to produce secondary metabolites including sterigmatocystin (ST) and a knockout mutant with reduced secondary metabolism (A. nidulans ?LaeA) were combined with the high quality fungus Cladosporium cladosporioides as mixed diets or offered as single diets. We hypothesized that (i) A. nidulans WT triggers more genes associated with stress responses compared to the A. nidulans ?laeA strain with suppressed secondary metabolism, (ii) C. cladosporioides causes significantly different transcript regulation than the A. nidulans strains ?laeA and WT, and (iii) mixed diets will cause significantly different transcript expression levels than single diets. All three hypotheses are generally supported despite the fact that many functions of the affected ESTs are unknown. The results bring molecular evidence for the existence of a link between fungal secondary metabolites and responses in springtails supporting the hypothesis that fungal secondary metabolites act as a shield against fungivory. Twenty-three day old Folsomia candida were fed ad libitum for five days to fungal cuts respectively Cladosporium cladosporoides, Aspergillus nidulans WT, Aspergillus nidulans ?LaeA and two mixed diets of C.cladosporoides/A. nidulans WT (mix 1) and C. cladosporoides/A. nudlans ?LaeA (mix2) respectively. Four biological replicates were used for every treatment and a dye swap was used with the Cy3/Cy5 labels. This resulted in 20 samples which were analysed in 10 hybridisations executed in an interwoven loop design. The C. cladosporoides diet was used as the reference in the data analysis.
Project description:While the structure and regulatory networks that govern type-six secretion system (T6SS) activity of Vibrio cholerae are becoming increasingly clear, we know less about the role of T6SS in disease. Under laboratory conditions, V. cholerae uses T6SS to outcompete many Gram-negative species, including other V. cholerae strains and human commensal bacteria. However, the role of these interactions has not been resolved in an in vivo setting. We used the Drosophila melanogaster model of cholera to define the contribution of T6SS to V. cholerae pathogenesis. Here, we demonstrate that interactions between T6SS and host commensals impact pathogenesis. Inactivation of T6SS, or removal of commensal bacteria, attenuates disease severity. Reintroduction of the commensal, Acetobacter pasteurianus, into a germ-free host is sufficient to restore T6SS-dependent pathogenesis in which T6SS and host immune responses regulate viability. Together, our data demonstrate that T6SS acts on commensal bacteria to promote the pathogenesis of V. cholerae.
Project description:As important players in the host defense system, commensal microbes and the microbiota influence multiple aspects of host physiology. Bordetella pertussis infection is highly contagious among humans. However, the roles of the microbiota in B. pertussis pathogenesis are poorly understood. Here, we show that antibiotic-mediated depletion of the microbiota results in increased susceptibility to B. pertussis infection during the early stage. The increased susceptibility was associated with a marked impairment of the systemic IgG, IgG2a, and IgG1 antibody responses to B. pertussis infection after antibiotic treatment. Furthermore, the microbiota impacted the short-lived plasma cell responses as well as the recall responses of memory B cells to B. pertussis infection. Finally, we found that the dysbiosis caused by antibiotic treatment affects CD4+ T cell generation and PD-1 expression on CD4+ T cells and thereby perturbs plasma cell differentiation. Our results have revealed the importance of commensal microbes in modulating host immune responses to B. pertussis infection and support the possibility of controlling the severity of B. pertussis infection in humans by manipulating the microbiota.
Project description:Over the past decade, there has been increasing evidence highlighting the implication of the gut microbiota in a variety of brain disorders such as depression, anxiety, and schizophrenia. Studies have shown that depression affects the stability of gut microbiota, but the impact of antidepressant treatments on microbiota structure and metabolism remains underexplored. In this study, we investigated the in vitro antimicrobial activity of antidepressants from different therapeutic classes against representative strains of human gut microbiota. Six different antidepressants: phenelzine, venlafaxine, desipramine, bupropion, aripiprazole and (S)-citalopram have been tested for their antimicrobial activity against 12 commensal bacterial strains using agar well diffusion, microbroth dilution method, and colony counting. The data revealed an important antimicrobial activity (bacteriostatic or bactericidal) of different antidepressants against the tested strains, with desipramine and aripiprazole being the most inhibitory. Strains affiliating to most dominant phyla of human microbiota such as Akkermansia muciniphila, Bifidobacterium animalis and Bacteroides fragilis were significantly altered, with minimum inhibitory concentrations (MICs) ranged from 75 to 800 μg/mL. A significant reduction in bacterial viability was observed, reaching 5 logs cycle reductions with tested MICs ranged from 400 to 600 μg/mL. Our findings demonstrate that gut microbiota could be altered in response to antidepressant drugs.
Project description:Gastrointestinal commensal microbiota is a concentrated mix of microbial life forms, including bacteria, fungi, archaea and viruses. These life forms are targets of host antimicrobial defense in order to establish a homeostatic symbiosis inside the host. However, they are also instrumental in shaping the functions of our immune system via a diverse set of communication mechanisms. In the gut, T helper 17, regulatory T and B cells are continuously tuned by specific microbial strains and metabolic processes. These cells in return help to establish a mutually beneficial exchange with the gut microbial contents. Imbalances in this symbiosis lead to dysregulations in the host's ability to control infections and the development of autoimmune diseases. In addition, the commensal microbiota has a significant and obligatory role in shaping both gut intrinsic and distal lymphoid organs, casting a large impact on the overall immune landscape in the host. This review discusses the major components of the microbial community in the gut and how its members collectively and individually exert regulatory roles in the host immune system and lymphoid structure development, as well as the functions of several major immune cell types.