Project description:Early-weaning-induced stress causes diarrhea, thereby reduces growth performance of piglets. Gut bacterial dysbiosis emerges as a leading cause of post-weaning diarrhea. The present study was aimed to investigate the effect of capsulized fecal microbiota transportation (FMT) on gut bacterial community, immune response and gut barrier function of weaned piglets. Thirty-two were randomly divided into two groups fed with basal diet for 21 days. Recipient group was inoculated orally with capsulized fecal microbiota of health Tibetan pig daily morning during whole period of trial, while control group was given orally empty capsule. The results showed that the F/G ratio, diarrhea ratio, diarrhea index, and histological damage score of recipient piglets were significantly decreased. FMT treatment also significantly increased the colon length of piglets. Furthermore, the relative abundances of Firmicutes, Euryarchaeota, Tenericutes, Lactobacillus, Methanobrevibacter and Sarcina in colon of recipient piglets were increased, and the relative abundances of Campylobacter, Proteobacteria, and Melainabacteria were significantly decreased compared with control group.
Project description:<p>Post-weaning diarrhea (PWD) causes significant economic losses to the pig farming industry. Our previous study demonstrated that the engineered Bacillus subtilis WB600/ZD (an engineered Bacillus subtilis strain expressing the antimicrobial defensin peptide from Zophobas atratus), alleviates intestinal inflammation, modulates gut microbiota, and maintains redox homeostasis in Salmonella-challenged mice, yet the precise mechanisms remain unclear. This study suggests that WB600/ZD has great potential as an antibiotic alternative for improving the intestinal health in newly weaned piglets.</p><p><strong>Keywords:</strong> Engineered Bacillus subtilis WB600/ZD; Post-weaning diarrhea; Salmonella Infantis; Fecal microbiota transplantation; Ileitis; Aryl hydrocarbon receptor</p>
Project description:Early weaning commonly results in gastrointestinal disorders, inflammation and diarrhea in infants and young animals. Resveratrol, a plant phenol, affords protection against inflammation and cancer.A porcine model was used to investigate the effects of maternal resveratrol supplementation on diarrhea, intestinal inflammation and intestinal morphology in offspring during weaning. The intestinal gene expression was measureed by RNA sequencing (RNA-seq) analysis. Results that weaning-associated intestinal inflammation and diarrhea in pig offspring were alleviated and intestinal morphology was improved by maternal resveratrol supplementation. In weaning piglets (21-day-old), RNA-seq showed that differentially expressed genes (DEGs) were enriched for T cell receptor, primary immunodeficiency, mitogen-activated protein kinase (MAPK) and Ras signaling pathway. In post-weaning piglets (28-day-old), RNA-seq showed that DEGs were enriched in the cytokine-cytokine receptor interaction pathway and pathways related to metabolism. This study provided insight into molecular mechanisms underlying the effects of maternal dietary resveratrol.
Project description:The objective of this experiment was to use transcriptional profiling of skeletal muscle and adipose tissue to develop a better understanding of the metabolic basis for poor weaned-pig transition. A total of 1,054 pigs were reared in commercial conditions and weighed at birth, weaning, and 3 weeks post- weaning. Transition average daily gain (tADG) was calculated as the average daily gain for the 3-week period post-weaning. Nine pigs from each of the lowest 10th percentile (low tADG) and the 60th-70th percentile (high tADG) were harvested at 3 weeks post-weaning. Differential expression analysis was conduced in both tissues using RNA-Seq methodology
Project description:The objective of this experiment was to use transcriptional profiling of skeletal muscle and adipose tissue to develop a better understanding of the metabolic basis for poor weaned-pig transition. A total of 1,054 pigs were reared in commercial conditions and weighed at birth, weaning, and 3 weeks post- weaning. Transition average daily gain (tADG) was calculated as the average daily gain for the 3-week period post-weaning. Nine pigs from each of the lowest 10th percentile (low tADG) and the 60th-70th percentile (high tADG) were harvested at 3 weeks post-weaning. Differential expression analysis was conduced in both tissues using RNA-Seq methodology mRNA profiling in two different tissues (skeletal muscle and adipose tissue) harvested at 3 weeks post-weaning