Project description:This experiment was designed to identify transcribed regions of both japonica and indica rice chromosome 10. A series of high-density oligonucleotide tiling arrays that represent sense and antisense strands of the entire nonrepetitive sequence of the chromosome were used to measure transcriptional activities. A total of 750,282 and 838,816 36mer oligonucleotide probes, positioned every 46 nt on average, were designed to interrogating the japonica and the indica chromosome, respectively. The probes were synthesized via maskless photolithography at a feature density of approximately 389,000 probes per slide. The arrays were hybridized with fluorescence-labeled cDNA reverse-transcribed from equal amounts of four selected poly(A)+ RNA populations, namely, seedling roots, seedling shoots, panicles, and suspension cultured cells of the respective rice subspecies. Keywords: other
Project description:Purpose: The goal of this study is to compare the different genetic mechanisms between Indica and Japonica rice under cadmium stress.
Project description:The lem mutant was discovered in a doubled haploid (DH) line derived from the F1 of Gui-630 (Indica)xTaiwanjing (Japonica) by anther culture. The lem mutant did not affect other traits but caused all other floral organs (including palea, lodicule, stamen and carpel) to homeotically transform into lemma or lemma-like structures and caused floral meristem to be indeterminate, thus resulting in the mutant floret consisting of whorls of lemma and lemma-like organs. To identify the global gene expression changes mediated by LEM, we used 57K Affymetrix rice whole genome array to investigate the differences of genome-wide transcriptome between the young panicles of mutant lem versus WT samples during flower development stage. Keywords: rice (Oryza sativa L.),wild-type and lemmata mutant We generate gene expression profiles of rice cultivar Gui-630 (indica)x Taiwanjing (japonica) and mutant lemmata by using 57K Affymetrix rice whole genome array.
Project description:The lem mutant was discovered in a doubled haploid (DH) line derived from the F1 of Gui-630 (Indica)xTaiwanjing (Japonica) by anther culture. The lem mutant did not affect other traits but caused all other floral organs (including palea, lodicule, stamen and carpel) to homeotically transform into lemma or lemma-like structures and caused floral meristem to be indeterminate, thus resulting in the mutant floret consisting of whorls of lemma and lemma-like organs. To identify the global gene expression changes mediated by LEM, we used 57K Affymetrix rice whole genome array to investigate the differences of genome-wide transcriptome between the young panicles of mutant lem versus WT samples during flower development stage. Keywords: rice (Oryza sativa L.),wild-type and lemmata mutant
Project description:This experiment was designed to identify transcribed regions of indica rice genome. A series of high-density oligonucleotide tiling arrays that represent sense and antisense strands of the entire nonrepetitive sequence of the chromosome were used to measure transcriptional activities. A total of 838,816 36mer oligonucleotide probes, positioned every 46 nt on average, were designed to interrogate the indica genome, respectively. The probes were synthesized via maskless photolithography at a feature density of approximately 389,000 probes per slide. The arrays were hybridized with fluorescence-labeled cDNA reverse-transcribed from equal amounts of four selected poly(A)+ RNA populations, namely, seedling roots, seedling shoots, panicles, and suspension cultured cells of the respective rice subspecies. Keywords: genome tiling experiments
Project description:Rice seedlings at 3-leaf stage were used for expression analysis in control and cold stressed (incloudling cold treatment for 3, 24hrs and recovery from cold stress for 24hrs) samples. Samples of shoots and roots from biological replicates of both genotypes were generated and the expression profiles were determined using Phalanx Rice OneArrayM-oM-<M- v1. Control and treated biological replicates of cold-tolerant cultivar TNG67 (japonica) and cold-sensitive cultivar TCN1 (indica) were analyzed
Project description:Rice seedlings at 3-leaf stage were used for expression analysis in control and salt stressed (incloudling salt treatment for 3, 24hrs and recovery from cold stress for 24hrs) samples. Samples of shoots and roots from biological replicates of both genotypes were generated and the expression profiles were determined using Phalanx Rice OneArrayï¼ v1. Control and treated biological replicates of salt-tolerant cultivar TNG67 (japonica) and salt-sensitive cultivar TCN1 (indica) were analyzed
Project description:Hybrids and allopolyploids typically exhibit radically altered gene expression patterns relative to their parents, a phenomenon termed âtranscriptomic shock.â To distinguish the effects of hybridization from polyploidization on coregulation of divergent alleles, we analyzed expression of parental copies (homoeologs) of 11,608 genes using RNA-seq-based transcriptome profiling in reciprocal hybrids and tetraploids constructed from subspecies japonica and indica of Asian rice (Oryza sativa L.)
Project description:By performing QTL mapping using 82 backcross inbred lines (BILs) of the Koshihikari (japonica) and Habataki (indica) cultivars for the rice initial growth, we identified two QTLs, qEPD1 and qEPD2, responsible for modulating plant height and/or leaf sheath length. To narrow down the number of candidate genes of each QTL, we conducted transcriptional profiling using RNAs isolated from the vegetative stem of Koshihikari and its two substituted lines (SL) with the Habataki qEPD1 or qEPD2 allele.
Project description:N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants.