Project description:Oxygen minimum zones (OMZs) are expanding due to increased sea surface temperatures, subsequent increased oxygen demand through respiration, reduced oxygen solubility, and thermal stratification driven in part by anthropogenic climate change. Devil's Hole, Bermuda is a model ecosystem to study OMZ microbial biogeochemistry because the formation and subsequent overturn of the suboxic zone occur annually. During thermally driven stratification, suboxic conditions develop, with organic matter and nutrients accumulating at depth. In this study, the bioavailability of the accumulated dissolved organic carbon (DOC) and the microbial community response to reoxygenation of suboxic waters was assessed using a simulated overturn experiment. The surface inoculated prokaryotic community responded to the deep (formerly suboxic) 0.2 μm filtrate with cell densities increasing 2.5-fold over 6 days while removing 5 μmol L<sup>-1</sup> of DOC. After 12 days, the surface community began to shift, and DOC quality became less diagenetically altered along with an increase in SAR202, a Chloroflexi that can degrade recalcitrant dissolved organic matter (DOM). Labile DOC production after 12 days coincided with an increase of <i>Nitrosopumilales,</i> a chemoautotrophic ammonia oxidizing archaea (AOA) that converts ammonia to nitrite based on the ammonia monooxygenase (<i>amoA</i>) gene copy number and nutrient data. In comparison, the inoculation of the deep anaerobic prokaryotic community into surface 0.2 μm filtrate demonstrated a die-off of 25.5% of the initial inoculum community followed by a 1.5-fold increase in cell densities over 6 days. Within 2 days, the prokaryotic community shifted from a <i>Chlorobiales</i> dominated assemblage to a surface-like heterotrophic community devoid of <i>Chlorobiales</i>. The DOM quality changed to less diagenetically altered material and coincided with an increase in the ribulose-1,5-bisphosphate carboxylase/oxygenase form I (<i>cbbL</i>) gene number followed by an influx of labile DOM. Upon reoxygenation, the deep DOM that accumulated under suboxic conditions is bioavailable to surface prokaryotes that utilize the accumulated DOC initially before switching to a community that can both produce labile DOM via chemoautotrophy and degrade the more recalcitrant DOM.
Project description:Diazotrophs provide the main source of reactive nitrogen to the ocean, sustaining primary productivity and CO2 uptake. Climate change is raising temperatures, decreasing pH and reducing nutrient availability. How microbes respond to these changes is largely unexplained. Similarly, the role of DOM in the growth and survival of certain diazotrophic organisms is poorly understood. Moreover, growing evidence indicates some diazotrophs are capable of utilizing distinct DOM compounds via osmotrophy providing them with additional metabolic plasticity and ecological advantages compared to other non-diazotrophic microbes. We aimed to understand how osmotrophy could modify carbon uptake and alleviate energy stress in diazotrophs under ongoing climate change perturbations. We hypothesized that Crocosphaera preferentially uses DOM when labile as a carbon source in present pH conditions, as compared to future more acidic scenarios with higher access to inorganic carbon. Alternatively, the lower pH may cause Crocosphaera to be energy limited when trying to maintain intracellular homeostasis which would favour DOM uptake as an extra source of energy.
Project description:The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.
Project description:The available energy and carbon sources for prokaryotes in the deep ocean remain still largely enigmatic. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes. Shipboard experiments performed in the North Atlantic using Labrador Sea Water (~2000 m depth) amended with thiosulfate led to an enhanced prokaryotic dissolved inorganic carbon (DIC) fixation.
2021-04-30 | GSE136729 | GEO
Project description:GEREMIA DOM bioavailability in coastal area
Project description:Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. The toxicity of DON is mainly characterized by its ability to inhibit ribosomal protein biosynthesis. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct or indirect effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). These organelles are required for pathogenicity-related phenotypes including motility, biofilm formation, host cell interactions, and host colonization, which may explain the high Campylobacter load in the intestine of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.
Project description:Hirschsprung’s disease (HSCR) is a congenital disease which is characterized by the reduction or absence of neurons and glial cells in the enteric nervous system (ENS). Failure of neural crest cells (NCCs) to colonize the gut during the embryonic development has been considered as one of the possible causes of the disease. In this study, the migration and gene expression of sacral NCCs from the spontaneous mouse mutant Dominant megacolon (Dom) which is a HSCR animal model expressing a mutated transcription factor Sox10, were analyzed in order to identify candidate genes which may possibly affect the NCC migration in the mutant.