Project description:Despite a significant increase in genomic data, our knowledge of gene functions and their transcriptional responses to environmental stimuli remains limited. Here, we use the model keystone species Daphnia pulex to study environmental responses of genes in the context of their gene family history to better understand the relationship between genome structure and gene function in response to environmental stimuli. Daphnia were exposed to five different treatments, each consisting of a diet supplemented with one of five cyanobacterial species, and a control treatment consisting of a diet of only green algae. Differential gene expression profiles of Daphnia exposed to each of these five cyanobacterial species showed that genes with known functions are more likely to be shared by different expression profiles whereas genes specific to the lineage of Daphnia are more likely to be unique to a given expression profile. Furthermore, while only a small number of non-lineage specific genes was conserved across treatment type, there was a high degree of overlap in expression profiles at the functional level. The conservation of functional responses across the different cyanobacterial treatments can be attributed to the treatment specific expression of different paralogous genes within the same gene family. Comparison with available gene expression data in the literature suggests differences in nutritional composition in diets with cyanobacterial species compared to diets of green algae as a primary driver for cyanobacterial effects on Daphnia. We conclude that conserved functional responses in Daphnia across different cyanobacterial treatments are mediated through alternate regulation of paralogous gene families.
Project description:Despite a significant increase in genomic data, our knowledge of gene functions and their transcriptional responses to environmental stimuli remains limited. Here, we use the model keystone species Daphnia pulex to study environmental responses of genes in the context of their gene family history to better understand the relationship between genome structure and gene function in response to environmental stimuli. Daphnia were exposed to five different treatments, each consisting of a diet supplemented with one of five cyanobacterial species, and a control treatment consisting of a diet of only green algae. Differential gene expression profiles of Daphnia exposed to each of these five cyanobacterial species showed that genes with known functions are more likely to be shared by different expression profiles whereas genes specific to the lineage of Daphnia are more likely to be unique to a given expression profile. Furthermore, while only a small number of non-lineage specific genes was conserved across treatment type, there was a high degree of overlap in expression profiles at the functional level. The conservation of functional responses across the different cyanobacterial treatments can be attributed to the treatment specific expression of different paralogous genes within the same gene family. Comparison with available gene expression data in the literature suggests differences in nutritional composition in diets with cyanobacterial species compared to diets of green algae as a primary driver for cyanobacterial effects on Daphnia. We conclude that conserved functional responses in Daphnia across different cyanobacterial treatments are mediated through alternate regulation of paralogous gene families. Whole transcriptome dual color arrays were used to discover differentially expressed genes following sub-lethal exposure to five cyanobacteria in D. pulex. RNA was isolated from eight independent and concurrently replicated exposures of Daphnia to control and five cyanobacteria conditions. RNA was hybridized to microarrays using a standard, control vs. treated design that included dye swaps. Cyanobacteria were Anabaena (ANA), Aphanizomenon (Aph), Cylindrospermopsis (Cyl), Nodularia (Nod) and Oscillatoria (Osl).
Project description:"Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins." Joseph.R.Shaw, John.K.Colbourne, Jennifer.C.Davey, Stephen.P.Glaholt, Thomas.H.Hampton, Celia.Y.Chen, Carol.L.Folt, Joshua.W.Hamilton (BMC Genomics 2007). Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences. Keywords: cDNA microarrays, stress response, expressed sequence tags (EST), Daphnia Genomics Consortium, Arthropod, Gene Expression Profiling, Gene Expression Regulation
Project description:To profile the Daphnia species methylome and to achieve a better understanding of the level of variations in the methylome of Daphnia species, we performed whole genome bisulfite sequencing (WGBSeq) of adult Daphnia magna Bham2 strain and Daphnia pulex Eloise Butler strain (EB45 and EB31 strains). We also analysed the correlation between gene expression and methylation in the two species, using data generated in this study and RNA-seq data from Orsini, et al. 2016. We found that methylation percentage across the genome of Daphnia spp. follows a bimodal distribution. Furthermore, CpG methylation in Daphnia predominantly occurs at coding regions. Although methylation levels significantly decrease towards the 3’ end of a gene with a significant drop in methylation levels from one exon to the neighbouring intron, there is a clear spike in relative methylation levels between exon and intron boundaries, which may be linked to regulation of splicing. We further demonstrate that DNA methylation in Daphnia is responsive to intrinsic and extrinsic factors. We also compared the methylation and gene expression correlations found in Daphnia to publicly available dataset from two other invertebrate species (Apis mellifera and Nasonia vitripennis) and two vertebrate species (Homo sapiens and Mus musculus). We observed that similar to other invertebrates, Daphnia’s genome is sparsely methylated at a lower level and the methylation is predominantly focused at gene body while in vertebrate species the genome is heavily methylated (global methylation). Although the level and distribution of methylation across CpG sites is different between vertebrates and invertebrates it is possible that methylation density at coding regions has the same function between vertebrates and invertebrates. We demonstrate evolutionary conservation of a positive correlation between high methylation density at coding regions and gene expression across vertebrates and invertebrates, leading to potentially ensuring continuous high expression of genes required throughout the life in both vertebrates and invertebrates.