Project description:We leveraged massively parallel sequencing approach to comprehensively characterize the spectrum of somatic mutations and genomic rearrangements in two intestinal-type gastric adenocarcinomas from patients with and without active Helicobacter pylori infections. The tumours exhibited distinct patterns of genomic changes with more than 16,000 somatic substitutions on average, focal amplifications and rearrangements in the non-active infected tumour and a 7-fold enrichment of micro-deletions in the infected tumour. Paired-end sequences from large insert libraries revealed the structure and origins of large amplicons, including one involving the oncogene KRAS. The mutational frequencies of the tumours revealed patterns of H. pylori infection and mutagenesis and a unique exome signature, providing insights into mechanisms that define the mutational landscape of gastric cancer. For the tumour with active infection, we also reconstructed the genome of the pathogenic H. pylori strain from the raw sequence reads, demonstrating the power of whole-genome shotgun sequencing for simultaneously characterizing the tumour and its associated carcinogen genome.
Project description:Aflatoxin B1 (AFB1) is a mutagen and IARC (International Agency for Research on Cancer) Group 1 carcinogen that causes hepatocellular carcinoma (HCC). Here we present the first whole genome data on the mutational signatures of AFB1 exposure from a total of > 40,000 mutations in four experimental systems: two different human cell lines, and in liver tumors in wild-type mice and in mice that carried a hepatitis B surface antigen transgene – this to model the multiplicative effects of aflatoxin exposure and hepatitis B in causing HCC. AFB1 mutational signatures from all four experimental systems were remarkably similar. We integrated the experimental mutational signatures with data from newly-sequenced HCCs from Qidong County, China, a region of well-studied aflatoxin exposure. This indicated that COSMIC mutational signature 24, previously hypothesized to stem from aflatoxin exposure, indeed likely represents AFB1 exposure, possibly combined with other exposures. Among published somatic mutation data, we found evidence of AFB1 exposure in 0.7% of HCCs treated in North America, 1% of HCCs from Japan, but 16% of HCCs from Hong Kong. Thus, aflatoxin exposure apparently remains a substantial public health issue in some areas. This aspect of our study exemplifies the promise of future widespread resequencing of tumor genomes in providing new insights into the contribution of mutagenic exposures to cancer incidence.
Project description:This study aims to characterise the mutation burdens and signatures of adult stem cells derived from different regions of the stomach in order to gain insight into the causes and preclinical evolution of the diverse cancer subtypes. Clonal populations of cells from different anatomical locations of the stomach will be derived through organoid culture and/or laser microdissection and interrogated by whole genome sequencing and/or targeted pulldown. A total of circa 300 samples from 20 – 30 donors (cancer and non-cancer patients undergoing total/partial gastrectomy) will be analysed for mutational burden and signatures and genomic findings correlated with topology, age, risk factors and different stages of pre-neoplastic or neoplastic progression.
Project description:This study aims to characterise the mutation burdens and signatures of adult stem cells derived from different regions of the stomach in order to gain insight into the causes and preclinical evolution of the diverse cancer subtypes. Clonal populations of cells from different anatomical locations of the stomach will be derived through organoid culture and/or laser microdissection and interrogated by whole genome sequencing and/or targeted pulldown. A total of circa 300 samples from 20 – 30 donors (cancer and non-cancer patients undergoing total/partial gastrectomy) will be analysed for mutational burden and signatures and genomic findings correlated with topology, age, risk factors and different stages of pre-neoplastic or neoplastic progression.
Project description:Transcript abundance was measured in whole-body virgin male Drosophila serrata from 41 inbred lines that had diverged through 27 generations of mutation accumulation. Pleiotropic mutations are the ultimate source of genetic variation in complex traits, including many human diseases. However, the nature and extent of mutational pleiotropy remain largely unknown. Here, we investigate the variation in 11,604 gene expression traits among 41 mutation accumulation lines of Drosophila serrata, which had diverged for 27 generations. We detected significant mutational variance in 4.6% of ESTs, but 70% of ESTs were invariant among lines, allowing us to reject a null hypothesis of phenome-wide universal pleiotropy. Mutational covariance among ESTs was detected at a frequency of only 1 in 193 random pairs of variable EST, bu t was detected among random combinations of five ESTs in 1 in 5 cases, revealing that mutational covariance among multiple ESTs was common. The observed frequency of significant multivariate covariance among random ESTs implied that a substantial number of ESTs (>70) must be pleiotropically affected by at least some mutations. We measured gene expression of male Drosophila serrata from 41 mutation accumulation lines (whole-body). Data from two replicates for each line are presented.
Project description:Transition of cytosine to thymine in CpG dinucleotides is the most frequent type of mutation in cancer. This increased mutability is commonly attributed to the spontaneous deamination of 5-methylcytosine (5mC), which is normally repaired by the base-excision repair (BER) pathway. However, the contribution of 5mC deamination in the increasing diversity of cancer mutational signatures remains poorly explored. Here, we integrate mutational signatures analysis in a large series of tumor whole genomes with lineage-specific epigenomic data to draw a detailed view on 5mC deamination in cancer. We uncover tumor type-specific patterns of 5mC deamination signatures in CpG and non-CpG contexts. We demonstrate that the BER glycosylase MBD4 preferentially binds to active chromatin and early replicating DNA, which correlates with lower mutational burden in these domains. We validate our findings by modeling BER deficiencies in isogenic cell models. Overall, we establish MBD4 as the main actor responsible for 5mC deamination repair in humans.